Matroids Matheplanet Forum Index
Moderiert von matroid
Mathematik » Notationen, Zeichen, Begriffe » Bezeichnung der Winkel am Dreieck aus den Seiten-Schnittpunkten mit den Winkelhalbierenden
Autor
Kein bestimmter Bereich J Bezeichnung der Winkel am Dreieck aus den Seiten-Schnittpunkten mit den Winkelhalbierenden
Wario
Aktiv Letzter Besuch: in der letzten Woche
Dabei seit: 01.05.2020
Mitteilungen: 1208
  Themenstart: 2022-07-03

Wie könnte ich die vier Winkel an $W_a, W_b,W_c$ sinnvoll und systematisch bezeichnen? Am Punkt $W_b$ bzw. $W_a$ sind zur Zeit nur zwei von vier Winkeln eingezeichnet - mit vorläufigen Bezeichnungen. Bei $W_c$ ist noch nichts eingezeichnet. Erster eigener Versuch: $% Seitenlängen \pgfmathsetmacro{\a}{5} % 4 \pgfmathsetmacro{\b}{4.5} % 3.5 \pgfmathsetmacro{\c}{7} % 6 \pgfmathsetmacro{\Alpha}{acos((\b^2+\c^2-\a^2)/(2*\b*\c))} \pgfmathsetmacro{\Beta}{acos((\a^2+\c^2-\b^2)/(2*\a*\c))} \pgfmathsetmacro{\Gamma}{acos((\a^2+\b^2-\c^2)/(2*\a*\b))} \pgfmathsetmacro{\wA}{2*\b*\c*cos(\Alpha/2)/(\b+\c)} \pgfmathsetmacro{\wB}{2*\a*\c*cos(\Beta/2)/(\a+\c)} \pgfmathsetmacro{\wC}{2*\a*\b*cos(\Gamma/2)/(\a+\b)} % Inkreis \pgfmathsetmacro{\s}{0.5*(\a+\b+\c)} \pgfmathsetmacro{\F}{sqrt(\s*(\s-\a)*(\s-\b)*(\s-\c))} \pgfmathsetmacro{\r}{\F/\s} \pgfmathsetmacro{\ai}{\a/(2*\s)} \pgfmathsetmacro{\bi}{\b/(2*\s)} \pgfmathsetmacro{\ci}{\c/(2*\s)} \pgfkeys{/tikz/savevalue/.code 2 args={\global\edef#1{#2}}} \begin{tikzpicture}[%scale=0.7, font=\footnotesize, background rectangle/.style={draw=none, fill=black!1, rounded corners}, show background rectangle, Punkt/.style 2 args={ label={[#1]:$#2$} }, Dreieck/.style={thick}, ] % Dreieckskonstruktion \coordinate[label=below:$A$] (A) at (0,0); \coordinate[label=below:$B$] (B) at (\c,0); \coordinate[label=$C$] (C) at (\Alpha:\b); \draw[local bounding box=dreieck] (A) -- (B) -- (C) --cycle; % Winkelhalbierende \draw[] (A) --+ (0.5*\Alpha:\wA) coordinate[label={[inner sep=1pt]45:$W_a$}] (Wa) node[pos=0.285, sloped, above, inner sep=1pt]{$w_\alpha$}; \path[] (B) -- (Wa) node[midway, right]{$a_B$}; \path[] (C) -- (Wa) node[near start, right]{$a_C$}; \draw[] (B) --+ (180-0.5*\Beta:\wB) coordinate[label={[inner sep=1pt]135:$W_b$}] (Wb) node[pos=0.3125, sloped, above, inner sep=1pt]{$w_\beta$}; \path[] (A) -- (Wb) node[midway, left]{$b_A$}; \path[] (C) -- (Wb) node[near start, left]{$b_C$}; \draw[] (C) --+ (-\Beta-0.5*\Gamma:\wC) coordinate[label=below:$W_c$] (Wc) node[pos=0.25, right, inner sep=1pt]{$w_\gamma$}; \path[] (A) -- (Wc) node[midway, below]{$c_A$}; \path[] (B) -- (Wc) node[midway, below]{$c_B$}; % Halbe Winkel \draw pic [draw, angle radius=12mm, angle eccentricity=0.8, % pic text={$\alpha$}, pic text options={}, "$\frac{\alpha}{2}$" ] {angle =B--A--Wa}; \draw pic [draw, angle radius=12mm, angle eccentricity=0.8, % pic text={$\alpha$}, pic text options={}, "$\frac{\alpha}{2}$" ] {angle =Wa--A--C}; \draw pic [draw, angle radius=15mm, angle eccentricity=0.9125, % pic text={$\alpha$}, pic text options={}, "$\frac{\beta}{2}$" ] {angle =C--B--Wb}; \draw pic [draw, angle radius=15mm, angle eccentricity=0.93, % pic text={$\alpha$}, pic text options={}, "$\frac{\beta}{2}$" ] {angle =Wb--B--A}; \draw pic [draw, angle radius=6mm, angle eccentricity=0.7, % pic text={$\alpha$}, pic text options={}, "$\frac{\gamma}{2}$" ] {angle =A--C--Wc}; \draw pic [draw, angle radius=6mm, angle eccentricity=0.7, % pic text={$\alpha$}, pic text options={}, "$\frac{\gamma}{2}$" ] {angle =Wc--C--B}; % Inkreis \coordinate[label={[inner sep=1.75pt]75:$I$}] (I) at ($\ai*(A)+\bi*(B)+\ci*(C)$); %\draw[] (I) circle[radius=\r]; % Winkelhalbierenden-Dreieck \draw[local bounding box=dreieck] (Wa) -- (Wb) -- (Wc) --cycle; % Winkel am Winkelhalbierenden-Dreieck \draw pic [draw, angle radius=8mm, angle eccentricity=0.75, % pic text={$\alpha$}, pic text options={}, "$\delta_a$" ] {angle =C--Wa--Wb}; \draw pic [draw, angle radius=8mm, angle eccentricity=0.75, % pic text={$\alpha$}, pic text options={}, "$\varepsilon_b$" ] {angle =Wb--Wa--A}; \draw pic [draw, angle radius=8mm, angle eccentricity=0.75, % pic text={$\alpha$}, pic text options={}, "$\delta_b$" ] {angle =Wa--Wb--C}; \draw pic [draw, angle radius=8mm, angle eccentricity=0.75, % pic text={$\alpha$}, pic text options={}, "$\varepsilon_b$" ] {angle =B--Wb--Wa}; %\path[] (A) -- (C) node[midway, left]{$b$}; %\path[] (B) -- (C) node[midway, right]{$a$}; %\draw pic [draw, angle radius=4mm, %angle eccentricity=1.8, % pic text={$\alpha$}, pic text options={}, %"$\chi$", %] {angle =C--W--A}; %\draw pic [draw, angle radius=5mm, %angle eccentricity=1.8, % pic text={$\alpha$}, pic text options={}, %"$\overline{\chi}$", %] {angle =B--W--C}; %% Punkte \foreach \P in {Wa, Wb, Wc, I} \draw[fill=black!1] (\P) circle (1.5pt); %% Annottion - Text %\node[below of=A, yshift=0.25cm, xshift=-7mm, %anchor=north west, align=left, %text width=2.3*\c cm, fill=black!1, %draw=none, font=\normalsize %]{% %\begin{itemize} %\item Sei $w$ eine beliebige Ecktransversale von $C$; dann entliest man der Abbildung mit Hilfe des Sinussatzes %$\dfrac{\sin(\chi)}{\sin(\gamma_1)} = \dfrac{b}{m}$ und %$\dfrac{\sin(\overline{\chi})}{\sin(\gamma_1)} = \dfrac{a}{n}$.\\ % Für die supplementären Winkel bei $W$ ist $ %\sin(\overline{\chi}) = \sin(180^\circ -\chi) =\sin(\chi)$; also %$\sin(\chi)=\dfrac{b}{m}\cdot \sin(\gamma_1) %= \dfrac{a}{n}\cdot \sin(\gamma_2) =\sin(\overline{\chi})$. Damit erhält man die allgemeine Beziehung %$$\dfrac{b\sin(\gamma_1)}{a\sin(\gamma_2)} = \dfrac{m}{n}$$ %\item Für den Sonderfall $\gamma_1 =\gamma_2$ ist $w$ die Winkelhalbierende und man erhält %$$\dfrac{b}{a} = \dfrac{m}{n}$$ %\end{itemize} %}; %% Winkelhalbierende %\draw[] (C) --+ (-\Beta-0.5*\Gamma:\wC) coordinate[Punkt={below}{W_c}] (Wc); %\path[] (A) -- (Wc) node[midway, below]{$m_c$}; %\path[] (B) -- (Wc) node[midway, below]{$n_c$}; %\draw pic [draw, angle radius=3mm, angle eccentricity=1.8, %% pic text={$\alpha$}, pic text options={}, %"$\gamma/2$", %] {angle =A--C--Wc}; %\draw pic [draw, angle radius=4mm, angle eccentricity=1.8, %% pic text={$\alpha$}, pic text options={}, %"$\gamma/2$", %] {angle =Wc--C--B}; % %\draw[] (A) --+ (0.5*\Alpha:\wA) coordinate[Punkt={right}{W_a}] (Wa); %\path[] (B) -- (Wa) node[midway, above]{$m_a$}; %\path[] (C) -- (Wa) node[midway, above]{$n_a$}; %\draw pic [draw, angle radius=6mm, angle eccentricity=1.8, %% pic text={$\alpha$}, pic text options={}, %"$\alpha/2$", %] {angle =Wa--A--C}; %\draw pic [draw, angle radius=5mm, angle eccentricity=1.8, %% pic text={$\alpha$}, pic text options={}, %"$\alpha/2$", %] {angle =B--A--Wa}; % %\draw[] (B) --+ (180-0.5*\Beta:\wB) coordinate[Punkt={left}{W_b}] (Wb); %\path[] (A) -- (Wb) node[midway, left]{$m_b$}; %\path[] (C) -- (Wb) node[midway, left]{$n_b$}; %\draw pic [draw, angle radius=6mm, angle eccentricity=2, %% pic text={$\alpha$}, pic text options={}, %"$\beta/2$", %] {angle =Wb--B--A}; %\draw pic [draw, angle radius=8mm, angle eccentricity=1.7, %% pic text={$\alpha$}, pic text options={}, %"$\beta/2$", %] {angle =C--B--Wb}; % %%%% Punkte %\foreach \P in {Wa,Wb,Wc} \draw[fill=black!1] (\P) circle (1.75pt); \end{tikzpicture}$


   Profil
Wario
Aktiv Letzter Besuch: in der letzten Woche
Dabei seit: 01.05.2020
Mitteilungen: 1208
  Beitrag No.1, vom Themenstarter, eingetragen 2022-07-05

$ % Seitenlängen \pgfmathsetmacro{\a}{6} % 4 \pgfmathsetmacro{\b}{4} % 3.5 \pgfmathsetmacro{\c}{7} % 6 \pgfmathsetmacro{\Alpha}{acos((\b^2+\c^2-\a^2)/(2*\b*\c))} \pgfmathsetmacro{\Beta}{acos((\a^2+\c^2-\b^2)/(2*\a*\c))} \pgfmathsetmacro{\Gamma}{acos((\a^2+\b^2-\c^2)/(2*\a*\b))} \pgfmathsetmacro{\wA}{2*\b*\c*cos(\Alpha/2)/(\b+\c)} \pgfmathsetmacro{\wB}{2*\a*\c*cos(\Beta/2)/(\a+\c)} \pgfmathsetmacro{\wC}{2*\a*\b*cos(\Gamma/2)/(\a+\b)} % Inkreis \pgfmathsetmacro{\s}{0.5*(\a+\b+\c)} \pgfmathsetmacro{\F}{sqrt(\s*(\s-\a)*(\s-\b)*(\s-\c))} \pgfmathsetmacro{\r}{\F/\s} \pgfmathsetmacro{\ai}{\a/(2*\s)} \pgfmathsetmacro{\bi}{\b/(2*\s)} \pgfmathsetmacro{\ci}{\c/(2*\s)} \pgfkeys{/tikz/savevalue/.code 2 args={\global\edef#1{#2}}} \begin{tikzpicture}[%scale=0.7, font=\footnotesize, background rectangle/.style={draw=none, fill=black!1, rounded corners}, show background rectangle, Punkt/.style 2 args={ label={[#1]:$#2$} }, Dreieck/.style={thick}, ] % Dreieckskonstruktion \coordinate[label=below:$A$] (A) at (0,0); \coordinate[label=below:$B$] (B) at (\c,0); \coordinate[label=$C$] (C) at (\Alpha:\b); \draw[local bounding box=dreieck] (A) -- (B) -- (C) --cycle; % Winkelhalbierende \draw[] (A) --+ (0.5*\Alpha:\wA) coordinate[label={[inner sep=1pt]45:$W_a$}] (Wa) node[pos=0.285, sloped, above, inner sep=1pt]{$w_\alpha$}; \path[] (B) -- (Wa) node[midway, right]{$a_B$}; \path[] (C) -- (Wa) node[near start, right]{$a_C$}; \draw[] (B) --+ (180-0.5*\Beta:\wB) coordinate[label={[inner sep=1pt]135:$W_b$}] (Wb) node[pos=0.3125, sloped, above, inner sep=1pt]{$w_\beta$}; \path[] (A) -- (Wb) node[midway, left]{$b_A$}; \path[] (C) -- (Wb) node[near start, left]{$b_C$}; \draw[] (C) --+ (-\Beta-0.5*\Gamma:\wC) coordinate[label=below:$W_c$] (Wc) node[pos=0.25, right, inner sep=1pt]{$w_\gamma$}; \path[] (A) -- (Wc) node[midway, below]{$c_A$}; \path[] (B) -- (Wc) node[midway, below]{$c_B$}; % Halbe Winkel \draw pic [draw, angle radius=10mm, angle eccentricity=0.8, % pic text={$\alpha$}, pic text options={}, "$\frac{\alpha}{2}$" ] {angle =B--A--Wa}; \draw pic [draw, angle radius=10mm, angle eccentricity=0.8, % pic text={$\alpha$}, pic text options={}, "$\frac{\alpha}{2}$" ] {angle =Wa--A--C}; \draw pic [draw, angle radius=15mm, angle eccentricity=0.9125, % pic text={$\alpha$}, pic text options={}, "$\frac{\beta}{2}$" ] {angle =C--B--Wb}; \draw pic [draw, angle radius=15mm, angle eccentricity=0.93, % pic text={$\alpha$}, pic text options={}, "$\frac{\beta}{2}$" ] {angle =Wb--B--A}; \draw pic [draw, angle radius=7mm, angle eccentricity=0.7, % pic text={$\alpha$}, pic text options={}, "$\frac{\gamma}{2}$" ] {angle =A--C--Wc}; \draw pic [draw, angle radius=7mm, angle eccentricity=0.75, % pic text={$\alpha$}, pic text options={}, "$\frac{\gamma}{2}$" ] {angle =Wc--C--B}; % Inkreis \coordinate[label={[inner sep=1.0pt, yshift=1.5pt]75:$I$}] (I) at ($\ai*(A)+\bi*(B)+\ci*(C)$); %\draw[] (I) circle[radius=\r]; % Winkelhalbierenden-Dreieck \draw[local bounding box=dreieck] (Wa) -- (Wb) -- (Wc) --cycle; % Winkel am Winkelhalbierenden-Dreieck \draw pic [draw, angle radius=9mm, angle eccentricity=0.7, % pic text={$\alpha$}, pic text options={}, "$\overline\delta_a$" ] {angle =C--Wa--Wb}; \draw pic [draw, angle radius=9mm, angle eccentricity=0.8125, % pic text={$\alpha$}, pic text options={}, "$\overline\varepsilon_a$" ] {angle =Wb--Wa--A}; \draw pic [draw, angle radius=9mm, angle eccentricity=0.8, % pic text={$\alpha$}, pic text options={}, "$\varepsilon_a$" ] {angle =A--Wa--Wc}; \draw pic [draw, angle radius=9mm, angle eccentricity=0.7, % pic text={$\alpha$}, pic text options={}, "$\delta_a$" ] {angle =Wc--Wa--B}; \draw pic [draw, angle radius=8mm, angle eccentricity=0.75, % pic text={$\alpha$}, pic text options={}, "$\delta_b$" ] {angle =Wa--Wb--C}; \draw pic [draw, angle radius=8mm, angle eccentricity=0.75, % pic text={$\alpha$}, pic text options={}, "$\varepsilon_b$" ] {angle =B--Wb--Wa}; \draw pic [draw, angle radius=8mm, angle eccentricity=0.75, % pic text={$\alpha$}, pic text options={}, "$\overline\varepsilon_b$" ] {angle =Wc--Wb--B}; \draw pic [draw, angle radius=8mm, angle eccentricity=0.75, % pic text={$\alpha$}, pic text options={}, "$\overline\delta_b$" ] {angle =A--Wb--Wc}; \draw pic [draw, angle radius=8mm, angle eccentricity=0.75, % pic text={$\alpha$}, pic text options={}, "$\delta_c$" ] {angle =Wb--Wc--A}; \draw pic [draw, angle radius=8mm, angle eccentricity=0.75, % pic text={$\alpha$}, pic text options={}, "$\varepsilon_c$" ] {angle =C--Wc--Wb}; \draw pic [draw, angle radius=8mm, angle eccentricity=0.75, % pic text={$\alpha$}, pic text options={}, "$\overline\varepsilon_c$" ] {angle =Wa--Wc--C}; \draw pic [draw, angle radius=8mm, angle eccentricity=0.75, % pic text={$\alpha$}, pic text options={}, "$\overline\delta_c$" ] {angle =B--Wc--Wa}; %\path[] (A) -- (C) node[midway, left]{$b$}; %\path[] (B) -- (C) node[midway, right]{$a$}; %\draw pic [draw, angle radius=4mm, %angle eccentricity=1.8, % pic text={$\alpha$}, pic text options={}, %"$\chi$", %] {angle =C--W--A}; %\draw pic [draw, angle radius=5mm, %angle eccentricity=1.8, % pic text={$\alpha$}, pic text options={}, %"$\overline{\chi}$", %] {angle =B--W--C}; %% Punkte \foreach \P in {Wa, Wb, Wc, I} \draw[fill=black!1] (\P) circle (1.5pt); %% Annottion - Text %\node[below of=A, yshift=0.25cm, xshift=-7mm, %anchor=north west, align=left, %text width=2.3*\c cm, fill=black!1, %draw=none, font=\normalsize %]{% %\begin{itemize} %\item Sei $w$ eine beliebige Ecktransversale von $C$; dann entliest man der Abbildung mit Hilfe des Sinussatzes %$\dfrac{\sin(\chi)}{\sin(\gamma_1)} = \dfrac{b}{m}$ und %$\dfrac{\sin(\overline{\chi})}{\sin(\gamma_1)} = \dfrac{a}{n}$.\\ % Für die supplementären Winkel bei $W$ ist $ %\sin(\overline{\chi}) = \sin(180^\circ -\chi) =\sin(\chi)$; also %$\sin(\chi)=\dfrac{b}{m}\cdot \sin(\gamma_1) %= \dfrac{a}{n}\cdot \sin(\gamma_2) =\sin(\overline{\chi})$. Damit erhält man die allgemeine Beziehung %$$\dfrac{b\sin(\gamma_1)}{a\sin(\gamma_2)} = \dfrac{m}{n}$$ %\item Für den Sonderfall $\gamma_1 =\gamma_2$ ist $w$ die Winkelhalbierende und man erhält %$$\dfrac{b}{a} = \dfrac{m}{n}$$ %\end{itemize} %}; %% Winkelhalbierende %\draw[] (C) --+ (-\Beta-0.5*\Gamma:\wC) coordinate[Punkt={below}{W_c}] (Wc); %\path[] (A) -- (Wc) node[midway, below]{$m_c$}; %\path[] (B) -- (Wc) node[midway, below]{$n_c$}; %\draw pic [draw, angle radius=3mm, angle eccentricity=1.8, %% pic text={$\alpha$}, pic text options={}, %"$\gamma/2$", %] {angle =A--C--Wc}; %\draw pic [draw, angle radius=4mm, angle eccentricity=1.8, %% pic text={$\alpha$}, pic text options={}, %"$\gamma/2$", %] {angle =Wc--C--B}; % %\draw[] (A) --+ (0.5*\Alpha:\wA) coordinate[Punkt={right}{W_a}] (Wa); %\path[] (B) -- (Wa) node[midway, above]{$m_a$}; %\path[] (C) -- (Wa) node[midway, above]{$n_a$}; %\draw pic [draw, angle radius=6mm, angle eccentricity=1.8, %% pic text={$\alpha$}, pic text options={}, %"$\alpha/2$", %] {angle =Wa--A--C}; %\draw pic [draw, angle radius=5mm, angle eccentricity=1.8, %% pic text={$\alpha$}, pic text options={}, %"$\alpha/2$", %] {angle =B--A--Wa}; % %\draw[] (B) --+ (180-0.5*\Beta:\wB) coordinate[Punkt={left}{W_b}] (Wb); %\path[] (A) -- (Wb) node[midway, left]{$m_b$}; %\path[] (C) -- (Wb) node[midway, left]{$n_b$}; %\draw pic [draw, angle radius=6mm, angle eccentricity=2, %% pic text={$\alpha$}, pic text options={}, %"$\beta/2$", %] {angle =Wb--B--A}; %\draw pic [draw, angle radius=8mm, angle eccentricity=1.7, %% pic text={$\alpha$}, pic text options={}, %"$\beta/2$", %] {angle =C--B--Wb}; % %%%% Punkte %\foreach \P in {Wa,Wb,Wc} \draw[fill=black!1] (\P) circle (1.75pt); \end{tikzpicture} $


   Profil
Wario hat selbst das Ok-Häkchen gesetzt.

Wechsel in ein anderes Forum:
 Suchen    
 
All logos and trademarks in this site are property of their respective owner. The comments are property of their posters, all the rest © 2001-2023 by Matroids Matheplanet
This web site was originally made with PHP-Nuke, a former web portal system written in PHP that seems no longer to be maintained nor supported. PHP-Nuke is Free Software released under the GNU/GPL license.
Ich distanziere mich von rechtswidrigen oder anstößigen Inhalten, die sich trotz aufmerksamer Prüfung hinter hier verwendeten Links verbergen mögen.
Lesen Sie die Nutzungsbedingungen, die Distanzierung, die Datenschutzerklärung und das Impressum.
[Seitenanfang]