Matroids Matheplanet Forum Index
Moderiert von Curufin epsilonkugel
Funktionentheorie » Holomorphie » Casorati-WeierstraB-Satz anwenden
Druckversion
Druckversion
Antworten
Antworten
Autor
Ausbildung Casorati-WeierstraB-Satz anwenden
Lisamayer98
Aktiv Letzter Besuch: im letzten Quartal
Dabei seit: 02.07.2020
Mitteilungen: 21
Zum letzten BeitragZum nächsten BeitragZum vorigen BeitragZum erstem Beitrag  Themenstart: 2021-01-05


Aufgabe:

(a) Beweisen Sie den Satz von Casorati-WeierstraB:
Sei \( z_{0} \in \mathbb{C}, r_{0}>0, f: B_{r_{0}}\left(z_{0}\right) \backslash\left\{z_{0}\right\} \rightarrow \mathbb{C} \) holomorph, und \( z_{0} \) eine wesentliche
singularität. Dann ist \( f\left(B_{r}\left(z_{0}\right) \backslash\left\{z_{0}\right\}\right) \) dicht in \( \mathbb{C} \) für alle \( r \in\left(0, r_{0}\right) \) Bemerkung: Es gilt sogar mehr (großer Satz von Picard): Entweder \( f\left(B_{r}\left(z_{0}\right) \backslash\left\{z_{0}\right\}\right)= \) C oder \( f\left(B_{r}\left(z_{0}\right) \backslash\left\{z_{0}\right\}\right)=\mathbf{C} \backslash\left\{w_{0}\right\} \) für ein \( w_{0} \in \mathbb{C} \)
(b) Zeigen Sie (ohne Verwendung des groBen Satzes von Picard), dass die Funktion
\(
f: \mathbb{C} \backslash\{0\} \rightarrow \mathbb{C}, z \mapsto f(z)=e^{\frac{1}{x}}
\)
in jeder punktierten Umgebung von 0 jeden Wert \( w \in \mathbb{C} \backslash\{0\} \) annimmt.


Kann jemand bitte helfen, wie man hier mit dem Casorati-WeierstraB Satz das beweist? Danke im Voraus!



Eine Notiz zu diese Forumbeitrag schreiben Notiz   Profil  Quote  Link auf diesen Beitrag Link
Neues Thema [Neues Thema] Antworten [Antworten]    Druckversion [Druckversion]

 


Wechsel in ein anderes Forum:
 Suchen    
 
All logos and trademarks in this site are property of their respective owner. The comments are property of their posters, all the rest © 2001-2021 by Matroids Matheplanet
This web site was originally made with PHP-Nuke, a former web portal system written in PHP that seems no longer to be maintained nor supported. PHP-Nuke is Free Software released under the GNU/GPL license.
Ich distanziere mich von rechtswidrigen oder anstößigen Inhalten, die sich trotz aufmerksamer Prüfung hinter hier verwendeten Links verbergen mögen.
Lesen Sie die Nutzungsbedingungen, die Distanzierung, die Datenschutzerklärung und das Impressum.
[Seitenanfang]