Matroids Matheplanet Forum Index
Moderiert von matroid
Kombinatorik & Graphentheorie » Graphentheorie » Streichholzgraphen 4-regulär und 4/n-regulär (n>4) und 2/5
Thema eröffnet 2016-02-17 22:35 von Slash
Seite 44   [1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62]   62 Seiten
Autor
Kein bestimmter Bereich Streichholzgraphen 4-regulär und 4/n-regulär (n>4) und 2/5
Slash
Aktiv Letzter Besuch: in der letzten Woche
Dabei seit: 23.03.2005
Mitteilungen: 9140
Wohnort: Cuxhaven
  Beitrag No.1720, vom Themenstarter, eingetragen 2019-02-17

Und wieder mal ein echter WOW-Beitrag von Stefan! :-o @ Stefan: Stehen wir jetzt kurz vor einem Algortihmus zur Graphenfindung, der sich fast komplett automatisieren lässt? Also Rahmen vorgeben und Lösung suchen lassen?


   Profil
haribo
Senior Letzter Besuch: in der letzten Woche
Dabei seit: 25.10.2012
Mitteilungen: 4495
  Beitrag No.1721, eingetragen 2019-02-17

sieht sehr spannend aus, stefan du programierst dolle tools immer wollt ihr dass man es einfach im program anschaut, wer kommt denn mal in berlin vorbei und gibt mir ne schulung? lg haribo


   Profil
Slash
Aktiv Letzter Besuch: in der letzten Woche
Dabei seit: 23.03.2005
Mitteilungen: 9140
Wohnort: Cuxhaven
  Beitrag No.1722, vom Themenstarter, eingetragen 2019-02-17

\quoteon(2019-02-17 22:25 - haribo in Beitrag No. 1721) immer wollt ihr dass man es einfach im program anschaut, wer kommt denn mal in berlin vorbei und gibt mir ne schulung? \quoteoff Also Berlin ist mir jetze etwas weit mit dem Fahrrad, aber 'ne Schulung gibt's gleich hier. Bei meinen FedGeo Beiträgen einfach auf den Graphen klicken und bei Stefans tikZ Beiträgen erst auf "quote" klicken. Dann im Text den Code zum Graphen %Eingabe war: % ... % %Ende der Eingabe. kopieren und ins Programm einfügen. Return oder "neu zeichnen" drücken - fertig. :-) Bei mehreren Graphen, wie in Stefans letztem Beiträg, muss man den Code dann etwas suchen.


   Profil
Slash
Aktiv Letzter Besuch: in der letzten Woche
Dabei seit: 23.03.2005
Mitteilungen: 9140
Wohnort: Cuxhaven
  Beitrag No.1723, vom Themenstarter, eingetragen 2019-02-22

Aus dem 2009 Paper "3-regular matchstick graphs with given girth" von Sascha Kurz and Giuseppe Mazzuoccolo: https://www.matheplanet.de/matheplanet/nuke/html/uploads/b/8038_kurz_pdf.png Können wir diesen Beweis angehen?


   Profil
Slash
Aktiv Letzter Besuch: in der letzten Woche
Dabei seit: 23.03.2005
Mitteilungen: 9140
Wohnort: Cuxhaven
  Beitrag No.1724, vom Themenstarter, eingetragen 2019-02-23

11 Knoten, 1×Grad 2, 10×Grad 3, 0 Dreiecke, 4 Überschneidungen, Fläche=3.38 16 Kanten, minimal 0.99999999999999877875, maximal 2.21851888546939202129 einzustellende Kanten, Abstände und Winkel: |P2-P4|=0.99999999999999955591 |P11-P10|=0.99999999999999877875 nicht passende Kanten: |P11-P6|=2.21851888546939202129 \geo ebene(290.33,234.03) x(10.08,12.86) y(9.03,11.27) form(.) #//Eingabe war: # #3-regular matchstick graph with girth 5 with 54 vertices. #This graph is flexible and has a point symmetry. # # # # # # # # #P[1]=[113.58643486895004,-101.48189316791]; #P[2]=[187.7068166255549,-27.54943126433608]; D=ab(1,2); #A(2,1,Bew(1)); M(3,1,2,blauerWinkel); M(4,3,1,gruenerWinkel); #M(5,3,4,orangerWinkel); M(6,1,2,vierterWinkel); #N(7,5,4); N(8,2,6); #RA(2,4); #N(9,7,8); #M(10,9,8,fuenfterWinkel); #M(11,5,3,sechsterWinkel); #A(11,6); RA(11,10); # # #//Ende der Eingabe, weiter mit fedgeo: p(11.08498657185813840442,9.03063696381562053261,P1) p(11.79299029606780457868,9.73684566278869567668,P2) p(10.08498657185813840442,9.03063696381562053261,P3) p(10.79299029606780457868,9.73684566278869567668,P4) p(10.45336556108357939365,9.96031267087547789174,P5) p(11.91138838410680023117,9.59371781477055307619,P6) p(11.16136928529324556791,10.66652136984855303581,P7) p(12.61939210831646462907,10.29992651374362999661,P8) p(12.05119610755183856554,11.12281976606441880051,P9) p(11.11271070781121039772,10.77750084901284743921,P10) p(10.12066050738727973624,10.90334360740139096890,P11) nolabel() s(P1,P2) s(P4,P2) s(P1,P3) s(P3,P4) s(P3,P5) s(P1,P6) s(P5,P7) s(P4,P7) s(P2,P8) s(P6,P8) s(P7,P9) s(P8,P9) s(P9,P10) s(P5,P11) s(P6,P11) s(P10,P11) pen(2) color(#0000FF) m(P2,P1,MA10) m(P1,P3,MB10) b(P1,MA10,MB10) #blue color(#008000) m(P1,P3,MA11) m(P3,P4,MB11) b(P3,MA11,MB11) #green color(#FFA500) m(P4,P3,MA12) m(P3,P5,MB12) f(P3,MA12,MB12) #orange color(#EE82EE) m(P2,P1,MA13) m(P1,P6,MB13) b(P1,MA13,MB13) #violet color(#008080) m(P8,P9,MA14) m(P9,P10,MB14) b(P9,MA14,MB14) #teal color(#00FF00) m(P3,P5,MA15) m(P5,P11,MB15) b(P5,MA15,MB15) #lime pen(2) color(#32CD32) s(P2,P4) #LimeGreen color(#32CD32) s(P11,P10) #LimeGreen color(blue) color(orange) color(red) \geooff \geoprint() Mal anschaulich: Es scheitert an nur einer Kante. https://www.matheplanet.de/matheplanet/nuke/html/uploads/b/8038_fig_8_kurz.png Oder es scheitert an (max.?) zwei Überschneidungen. 11 Knoten, 1×Grad 2, 10×Grad 3, 0 Dreiecke, 2? Überschneidungen, Fläche=2.47 16 Kanten, minimal 0.99999999999999833467, maximal 1.00000000000000066613 einzustellende Kanten, Abstände und Winkel: |P2-P4|=1.00000000000000022204 |P11-P6|=1.00000000000000066613 |P11-P10|=0.99999999999999833467 \geo ebene(437.2,294.06) x(10.05,12.96) y(10.2,12.15) form(.) #//Eingabe war: # #3-regular matchstick graph with girth 5 with 54 vertices. #This graph is flexible and has a point symmetry. # # # # # # # # #P[1]=[158.2934487121849,29.429016899342244]; #P[2]=[286.1684979342354,108.6033925715904]; D=ab(1,2); #A(2,1,Bew(1)); M(3,1,2,blauerWinkel); M(4,3,1,gruenerWinkel); #M(5,3,4,orangerWinkel); M(6,1,2,vierterWinkel); #N(7,5,4); N(8,2,6); #RA(2,4); #N(9,7,8); #M(10,9,8,fuenfterWinkel); #M(11,5,3,sechsterWinkel); #RA(11,6); RA(11,10); # # #//Ende der Eingabe, weiter mit fedgeo: p(11.05247256842831049539,10.19566970872362254852,P1) p(11.90269715186849985855,10.72208984294529088288,P2) p(10.05247256842831049539,10.19566970872362254852,P3) p(10.90269715186849985855,10.72208984294529088288,P4) p(10.57883397312931705869,11.04593065198820944772,P5) p(11.94291533376678060563,10.65076495332235495539,P6) p(11.42905855656950464549,11.57235078620987600573,P7) p(12.79313991720696819243,11.17718508754402151339,P8) p(12.30702206401738507680,12.05107834922439025149,P9) p(12.33780298159686772408,11.05155219393231114111,P10) p(11.45679748057719748999,11.52465821500272369349,P11) nolabel() s(P1,P2) s(P4,P2) s(P1,P3) s(P3,P4) s(P3,P5) s(P1,P6) s(P5,P7) s(P4,P7) s(P2,P8) s(P6,P8) s(P7,P9) s(P8,P9) s(P9,P10) s(P5,P11) s(P6,P11) s(P10,P11) pen(2) color(#0000FF) m(P2,P1,MA10) m(P1,P3,MB10) b(P1,MA10,MB10) #blue color(#008000) m(P1,P3,MA11) m(P3,P4,MB11) b(P3,MA11,MB11) #green color(#FFA500) m(P4,P3,MA12) m(P3,P5,MB12) f(P3,MA12,MB12) #orange color(#EE82EE) m(P2,P1,MA13) m(P1,P6,MB13) b(P1,MA13,MB13) #violet color(#008080) m(P8,P9,MA14) m(P9,P10,MB14) b(P9,MA14,MB14) #teal color(#00FF00) m(P3,P5,MA15) m(P5,P11,MB15) b(P5,MA15,MB15) #lime pen(2) color(#32CD32) s(P2,P4) #LimeGreen color(#32CD32) s(P11,P6) #LimeGreen color(#32CD32) s(P11,P10) #LimeGreen color(blue) color(orange) color(red) \geooff \geoprint()


   Profil
Slash
Aktiv Letzter Besuch: in der letzten Woche
Dabei seit: 23.03.2005
Mitteilungen: 9140
Wohnort: Cuxhaven
  Beitrag No.1725, vom Themenstarter, eingetragen 2019-03-04

Lasst uns mal ein paar "open problems and conjectures" sammeln. Ich hätte da eine Vermutung zur Form: Das kleinstmögliche Beispiel scheint immer eine Punkt- oder Spiegelsymmetrie zu besitzen. Bei den 4-reg. girth 3 der Harborth-Graph, bei den 3-reg. girth 5 der 54er, bei den 3-reg. girth 4 der 20er. Kann es einen 4-reg. girth 4 geben der nicht unendlich viele Knoten besitzt?


   Profil
Slash
Aktiv Letzter Besuch: in der letzten Woche
Dabei seit: 23.03.2005
Mitteilungen: 9140
Wohnort: Cuxhaven
  Beitrag No.1726, vom Themenstarter, eingetragen 2019-03-12

Der neue Artikel ist arXiviert: A 3-regular matchstick graph of girth 5 consisting of 54 vertices


   Profil
StefanVogel
Senior Letzter Besuch: in der letzten Woche
Dabei seit: 26.11.2005
Mitteilungen: 4288
Wohnort: Raun
  Beitrag No.1727, eingetragen 2019-03-16

\quoteon(2019-02-13 05:22 - haribo in Beitrag No. 1712) https://www.matheplanet.com/matheplanet/nuke/html/uploads/b/35059_dreier-girth5-explosion_-1709.png \quoteoff Neben Button "Punkte" und "Kanten" gibt es jetzt auch einen Button "Flächen". Dieser bestimmt neben der Gesamtfläche auch die Anzahl der Teilflächen, sortiert nach Eckenzahl. Im folgenden Beispiel #570-1 bedeutet die Ausgabe "42·3+20·4+2·5+1·6+2·7+1·8+1*24 Drei-, Vier-, Fünfecke…" dass der Graph aus 42 Dreiecken (grau), 20 Vierecken (helleres grün), 2 Fünfecken (rötlich), einem Sechseck (gelb), 2 Siebenecke (hellblau) und 1 Achteck (dunkleres grün) enthält und das letzte "1*24" bezeichnet immer die Umrandung, hier ein 24-Eck. 67 Knoten, 67×Grad 4, 0 Überschneidungen, Gesamtfläche=44.02, 42·3+20·4+2·5+1·6+2·7+1·8+1*24 Drei-, Vier-, Fünfecke… 134 Kanten, minimal 0.99999999999999644729, maximal 1.00000000000000399680 $ %Eingabe war: % %No.570-1 4/4 mit 134 % % % %D=50; P[1]=[0,0]; P[2]=[D,0]; A(2,1); L(3,1,2); L(4,3,2); L(5,4,2); L(6,4,5); L(7,6,5); M(8,1,3,blauerWinkel,2); N(12,8,3); N(13,10,12); N(14,11,13); L(15,13,12); Q(16,14,15,ab(15,14,1,3,[8,15],"gespiegelt"),D); A(11,22); A(17,18,ab(7,6,[1,15])); A(16,37); A(36,7,ab(36,1,[8,37],"gespiegelt")); A(33,63); A(6,42); N(67,66,37); A(67,15); A(67,45); R(5,8,"orange"); % % %Ende der Eingabe. \begin{tikzpicture}[draw=grey,font=\sffamily\scriptsize] \definecolor{Honeydew}{rgb}{0.94,1.00,0.94} \definecolor{Ivory}{rgb}{1.00,1.00,0.94} \definecolor{LightCyan}{rgb}{0.88,1.00,1.00} \definecolor{MintCream}{rgb}{0.96,1.00,0.98} \definecolor{Snow}{rgb}{1.00,0.98,0.98} \definecolor{WhiteSmoke}{rgb}{0.96,0.96,0.96} %Koordinaten als \coordinate (p-1) at (0,0); \foreach \i/\x/\y in { 1/2.42705098312484457423/0.00000000000000000000, 2/3.42705098312484457423/0.00000000000000000000, 3/2.92705098312484457423/0.86602540378443859659, 4/3.92705098312484457423/0.86602540378443859659, 5/4.42705098312484413015/0.00000000000000000000, 6/4.92705098312484413015/0.86602540378443859659, 7/5.42705098312484413015/0.00000000000000000000, 8/2.67705098312484368606/0.96824583655185436637, 9/1.71352549156242295325/0.70062926922203638824, 10/1.96352549156242250916/1.66887510577389064359, 11/1.00000000000000177636/1.40125853844407277649, 12/3.17705098312484457423/1.83427124033629307398, 13/2.46352549156242250916/2.53490050955832924018, 14/1.50000000000000133227/2.26728394222851159512, 15/3.42705098312484324197/2.80251707688814732933, 16/2.92705098312484324197/3.66854248067258614796, 17/0.00000000000000000000/4.20377561533221832946, 18/1.00000000000000022204/4.20377561533221832946, 19/0.96352549156242195405/3.93615904800240068440, 20/0.25000000000000111022/3.23552977878036474024, 21/1.21352549156242228712/2.96791321145054709518, 22/0.50000000000000166533/2.26728394222851070694, 23/1.96352549156242162098/3.93615904800240246075, 24/2.21352549156242250916/2.96791321145054887154, 25/1.49999999999999911182/6.80185182668553345309, 26/0.99999999999999944489/5.93582642290109596672, 27/1.99999999999999911182/5.93582642290109685490, 28/1.49999999999999977796/5.06980101911665759218, 29/0.49999999999999972244/5.06980101911665670400, 30/2.21352549156242117689/6.10122255746349750893, 31/2.46352549156241984463/7.06946839401535420677, 32/3.17705098312484057743/6.36883912479331648626, 33/3.42705098312483968925/7.33708496134517229592, 34/2.71352549156242028872/5.23519715367906002257, 35/3.67705098312484190970/5.50281372100887899990, 36/3.92705098312484190970/6.47105955756073303320, 37/3.42705098312484279788/4.53456788445702319024, 38/5.17705098312484590650/0.96824583655185392228, 39/6.14057647468726752749/0.70062926922203927482, 40/5.89057647468726486295/1.66887510577388931132, 41/6.85410196624968737211/1.40125853844407810556, 42/4.67705098312484501832/1.83427124033629351807, 43/5.39057647468726486295/2.53490050955833012836, 44/6.35410196624968648393/2.26728394222851603601, 45/4.42705098312484413015/2.80251707688814644115, 46/4.92705098312484235379/3.66854248067258614796, 47/7.85410196624968737211/4.20377561533222543488, 48/6.85410196624968648393/4.20377561533222188217, 49/6.89057647468726397477/3.93615904800240512529, 50/7.60410196624968737211/3.23552977878036873705, 51/6.64057647468726397477/2.96791321145054887154, 52/7.35410196624968648393/2.26728394222851603601, 53/5.89057647468726486295/3.93615904800240290484, 54/5.64057647468726486295/2.96791321145054931563, 55/6.35410196624968381940/6.80185182668553434127, 56/6.85410196624968559576/5.93582642290109774308, 57/5.85410196624968559576/5.93582642290109863126, 58/6.35410196624968648393/5.06980101911666203307, 59/7.35410196624968559576/5.06980101911666025671, 60/5.64057647468726397477/6.10122255746350017347, 61/5.39057647468726397477/7.06946839401535598313, 62/4.67705098312484413015/6.36883912479331826262, 63/4.42705098312484413015/7.33708496134517229592, 64/5.14057647468726486295/5.23519715367906091075, 65/4.17705098312484324197/5.50281372100887899990, 66/4.42705098312484324197/4.53456788445702407842, 67/3.92705098312484368606/3.66854248067258525978} \coordinate (p-\i) at (\x,\y); %Innenflächen als \filldraw[yellow,shift={+(0.1,0.1)}] (p-1) -- (p-2) -- (p-3) -- cycle; \filldraw[fill=WhiteSmoke,line width=0] (p-1) -- (p-2) -- (p-3) -- cycle; \filldraw[fill=WhiteSmoke,line width=0] (p-2) -- (p-4) -- (p-3) -- cycle; \filldraw[fill=WhiteSmoke,line width=0] (p-2) -- (p-5) -- (p-4) -- cycle; \filldraw[fill=WhiteSmoke,line width=0] (p-4) -- (p-5) -- (p-6) -- cycle; \filldraw[fill=WhiteSmoke,line width=0] (p-5) -- (p-7) -- (p-6) -- cycle; \filldraw[fill=MintCream,line width=0] (p-1) -- (p-3) -- (p-12) -- (p-8) -- cycle; \filldraw[fill=WhiteSmoke,line width=0] (p-1) -- (p-8) -- (p-9) -- cycle; \filldraw[fill=WhiteSmoke,line width=0] (p-10) -- (p-11) -- (p-9) -- cycle; \filldraw[fill=WhiteSmoke,line width=0] (p-10) -- (p-9) -- (p-8) -- cycle; \filldraw[fill=MintCream,line width=0] (p-10) -- (p-13) -- (p-14) -- (p-11) -- cycle; \filldraw[fill=WhiteSmoke,line width=0] (p-11) -- (p-14) -- (p-22) -- cycle; \filldraw[fill=MintCream,line width=0] (p-10) -- (p-8) -- (p-12) -- (p-13) -- cycle; \filldraw[fill=WhiteSmoke,line width=0] (p-12) -- (p-15) -- (p-13) -- cycle; \filldraw[fill=Snow,line width=0] (p-13) -- (p-15) -- (p-16) -- (p-24) -- (p-14) -- cycle; \filldraw[fill=MintCream,line width=0] (p-14) -- (p-24) -- (p-21) -- (p-22) -- cycle; \filldraw[fill=Honeydew,line width=0] (p-12) -- (p-3) -- (p-4) -- (p-6) -- (p-42) -- (p-45) -- (p-67) -- (p-15) -- cycle; \filldraw[fill=LightCyan,line width=0] (p-16) -- (p-37) -- (p-34) -- (p-27) -- (p-28) -- (p-18) -- (p-23) -- cycle; \filldraw[fill=WhiteSmoke,line width=0] (p-16) -- (p-23) -- (p-24) -- cycle; \filldraw[fill=MintCream,line width=0] (p-15) -- (p-67) -- (p-37) -- (p-16) -- cycle; \filldraw[fill=WhiteSmoke,line width=0] (p-17) -- (p-18) -- (p-29) -- cycle; \filldraw[fill=MintCream,line width=0] (p-17) -- (p-19) -- (p-23) -- (p-18) -- cycle; \filldraw[fill=WhiteSmoke,line width=0] (p-18) -- (p-28) -- (p-29) -- cycle; \filldraw[fill=WhiteSmoke,line width=0] (p-17) -- (p-20) -- (p-19) -- cycle; \filldraw[fill=WhiteSmoke,line width=0] (p-19) -- (p-20) -- (p-21) -- cycle; \filldraw[fill=WhiteSmoke,line width=0] (p-20) -- (p-22) -- (p-21) -- cycle; \filldraw[fill=MintCream,line width=0] (p-19) -- (p-21) -- (p-24) -- (p-23) -- cycle; \filldraw[fill=WhiteSmoke,line width=0] (p-25) -- (p-26) -- (p-27) -- cycle; \filldraw[fill=WhiteSmoke,line width=0] (p-26) -- (p-28) -- (p-27) -- cycle; \filldraw[fill=WhiteSmoke,line width=0] (p-26) -- (p-29) -- (p-28) -- cycle; \filldraw[fill=MintCream,line width=0] (p-25) -- (p-27) -- (p-34) -- (p-30) -- cycle; \filldraw[fill=WhiteSmoke,line width=0] (p-25) -- (p-30) -- (p-31) -- cycle; \filldraw[fill=WhiteSmoke,line width=0] (p-30) -- (p-32) -- (p-31) -- cycle; \filldraw[fill=MintCream,line width=0] (p-30) -- (p-34) -- (p-35) -- (p-32) -- cycle; \filldraw[fill=WhiteSmoke,line width=0] (p-31) -- (p-32) -- (p-33) -- cycle; \filldraw[fill=MintCream,line width=0] (p-32) -- (p-35) -- (p-36) -- (p-33) -- cycle; \filldraw[fill=WhiteSmoke,line width=0] (p-33) -- (p-36) -- (p-63) -- cycle; \filldraw[fill=WhiteSmoke,line width=0] (p-34) -- (p-37) -- (p-35) -- cycle; \filldraw[fill=Ivory,line width=0] (p-35) -- (p-37) -- (p-67) -- (p-66) -- (p-65) -- (p-36) -- cycle; \filldraw[fill=MintCream,line width=0] (p-36) -- (p-65) -- (p-62) -- (p-63) -- cycle; \filldraw[fill=MintCream,line width=0] (p-38) -- (p-42) -- (p-6) -- (p-7) -- cycle; \filldraw[fill=WhiteSmoke,line width=0] (p-38) -- (p-7) -- (p-39) -- cycle; \filldraw[fill=WhiteSmoke,line width=0] (p-38) -- (p-39) -- (p-40) -- cycle; \filldraw[fill=WhiteSmoke,line width=0] (p-39) -- (p-41) -- (p-40) -- cycle; \filldraw[fill=MintCream,line width=0] (p-38) -- (p-40) -- (p-43) -- (p-42) -- cycle; \filldraw[fill=MintCream,line width=0] (p-40) -- (p-41) -- (p-44) -- (p-43) -- cycle; \filldraw[fill=WhiteSmoke,line width=0] (p-41) -- (p-52) -- (p-44) -- cycle; \filldraw[fill=MintCream,line width=0] (p-44) -- (p-52) -- (p-51) -- (p-54) -- cycle; \filldraw[fill=WhiteSmoke,line width=0] (p-42) -- (p-43) -- (p-45) -- cycle; \filldraw[fill=Snow,line width=0] (p-43) -- (p-44) -- (p-54) -- (p-46) -- (p-45) -- cycle; \filldraw[fill=WhiteSmoke,line width=0] (p-46) -- (p-54) -- (p-53) -- cycle; \filldraw[fill=LightCyan,line width=0] (p-46) -- (p-53) -- (p-48) -- (p-58) -- (p-57) -- (p-64) -- (p-66) -- cycle; \filldraw[fill=WhiteSmoke,line width=0] (p-47) -- (p-59) -- (p-48) -- cycle; \filldraw[fill=WhiteSmoke,line width=0] (p-48) -- (p-59) -- (p-58) -- cycle; \filldraw[fill=MintCream,line width=0] (p-47) -- (p-48) -- (p-53) -- (p-49) -- cycle; \filldraw[fill=WhiteSmoke,line width=0] (p-47) -- (p-49) -- (p-50) -- cycle; \filldraw[fill=WhiteSmoke,line width=0] (p-49) -- (p-51) -- (p-50) -- cycle; \filldraw[fill=MintCream,line width=0] (p-49) -- (p-53) -- (p-54) -- (p-51) -- cycle; \filldraw[fill=WhiteSmoke,line width=0] (p-50) -- (p-51) -- (p-52) -- cycle; \filldraw[fill=WhiteSmoke,line width=0] (p-55) -- (p-57) -- (p-56) -- cycle; \filldraw[fill=MintCream,line width=0] (p-55) -- (p-60) -- (p-64) -- (p-57) -- cycle; \filldraw[fill=WhiteSmoke,line width=0] (p-56) -- (p-57) -- (p-58) -- cycle; \filldraw[fill=WhiteSmoke,line width=0] (p-56) -- (p-58) -- (p-59) -- cycle; \filldraw[fill=WhiteSmoke,line width=0] (p-55) -- (p-61) -- (p-60) -- cycle; \filldraw[fill=WhiteSmoke,line width=0] (p-60) -- (p-61) -- (p-62) -- cycle; \filldraw[fill=WhiteSmoke,line width=0] (p-61) -- (p-63) -- (p-62) -- cycle; \filldraw[fill=MintCream,line width=0] (p-60) -- (p-62) -- (p-65) -- (p-64) -- cycle; \filldraw[fill=WhiteSmoke,line width=0] (p-64) -- (p-65) -- (p-66) -- cycle; \filldraw[fill=MintCream,line width=0] (p-45) -- (p-46) -- (p-66) -- (p-67) -- cycle; \end{tikzpicture} $ Nach Klick auf eine dieser Flächen werden die Teilflächen etwas auseinandergerückt: 67 Knoten, 67×Grad 4, 0 Überschneidungen, Gesamtfläche=44.02, 42·3+20·4+2·5+1·6+2·7+1·8+1*24 Drei-, Vier-, Fünfecke… 134 Kanten, minimal 0.99999999999999644729, maximal 1.00000000000000399680 $ %Eingabe war: % %No.570-1 4/4 mit 134 % % % %D=50; P[1]=[0,0]; P[2]=[D,0]; A(2,1); L(3,1,2); L(4,3,2); L(5,4,2); L(6,4,5); L(7,6,5); M(8,1,3,blauerWinkel,2); N(12,8,3); N(13,10,12); N(14,11,13); L(15,13,12); Q(16,14,15,ab(15,14,1,3,[8,15],"gespiegelt"),D); A(11,22); A(17,18,ab(7,6,[1,15])); A(16,37); A(36,7,ab(36,1,[8,37],"gespiegelt")); A(33,63); A(6,42); N(67,66,37); A(67,15); A(67,45); R(5,8,"orange"); % % %Ende der Eingabe. \begin{tikzpicture}[draw=grey,font=\sffamily\scriptsize] \definecolor{Honeydew}{rgb}{0.94,1.00,0.94} \definecolor{Ivory}{rgb}{1.00,1.00,0.94} \definecolor{LightCyan}{rgb}{0.88,1.00,1.00} \definecolor{MintCream}{rgb}{0.96,1.00,0.98} \definecolor{Snow}{rgb}{1.00,0.98,0.98} \definecolor{WhiteSmoke}{rgb}{0.96,0.96,0.96} %Koordinaten als \coordinate (p-1) at (0,0); \foreach \i/\x/\y in { 1/2.42705098312484457423/0.00000000000000000000, 2/3.42705098312484457423/0.00000000000000000000, 3/2.92705098312484457423/0.86602540378443859659, 4/3.92705098312484457423/0.86602540378443859659, 5/4.42705098312484413015/0.00000000000000000000, 6/4.92705098312484413015/0.86602540378443859659, 7/5.42705098312484413015/0.00000000000000000000, 8/2.67705098312484368606/0.96824583655185436637, 9/1.71352549156242295325/0.70062926922203638824, 10/1.96352549156242250916/1.66887510577389064359, 11/1.00000000000000177636/1.40125853844407277649, 12/3.17705098312484457423/1.83427124033629307398, 13/2.46352549156242250916/2.53490050955832924018, 14/1.50000000000000133227/2.26728394222851159512, 15/3.42705098312484324197/2.80251707688814732933, 16/2.92705098312484324197/3.66854248067258614796, 17/0.00000000000000000000/4.20377561533221832946, 18/1.00000000000000022204/4.20377561533221832946, 19/0.96352549156242195405/3.93615904800240068440, 20/0.25000000000000111022/3.23552977878036474024, 21/1.21352549156242228712/2.96791321145054709518, 22/0.50000000000000166533/2.26728394222851070694, 23/1.96352549156242162098/3.93615904800240246075, 24/2.21352549156242250916/2.96791321145054887154, 25/1.49999999999999911182/6.80185182668553345309, 26/0.99999999999999944489/5.93582642290109596672, 27/1.99999999999999911182/5.93582642290109685490, 28/1.49999999999999977796/5.06980101911665759218, 29/0.49999999999999972244/5.06980101911665670400, 30/2.21352549156242117689/6.10122255746349750893, 31/2.46352549156241984463/7.06946839401535420677, 32/3.17705098312484057743/6.36883912479331648626, 33/3.42705098312483968925/7.33708496134517229592, 34/2.71352549156242028872/5.23519715367906002257, 35/3.67705098312484190970/5.50281372100887899990, 36/3.92705098312484190970/6.47105955756073303320, 37/3.42705098312484279788/4.53456788445702319024, 38/5.17705098312484590650/0.96824583655185392228, 39/6.14057647468726752749/0.70062926922203927482, 40/5.89057647468726486295/1.66887510577388931132, 41/6.85410196624968737211/1.40125853844407810556, 42/4.67705098312484501832/1.83427124033629351807, 43/5.39057647468726486295/2.53490050955833012836, 44/6.35410196624968648393/2.26728394222851603601, 45/4.42705098312484413015/2.80251707688814644115, 46/4.92705098312484235379/3.66854248067258614796, 47/7.85410196624968737211/4.20377561533222543488, 48/6.85410196624968648393/4.20377561533222188217, 49/6.89057647468726397477/3.93615904800240512529, 50/7.60410196624968737211/3.23552977878036873705, 51/6.64057647468726397477/2.96791321145054887154, 52/7.35410196624968648393/2.26728394222851603601, 53/5.89057647468726486295/3.93615904800240290484, 54/5.64057647468726486295/2.96791321145054931563, 55/6.35410196624968381940/6.80185182668553434127, 56/6.85410196624968559576/5.93582642290109774308, 57/5.85410196624968559576/5.93582642290109863126, 58/6.35410196624968648393/5.06980101911666203307, 59/7.35410196624968559576/5.06980101911666025671, 60/5.64057647468726397477/6.10122255746350017347, 61/5.39057647468726397477/7.06946839401535598313, 62/4.67705098312484413015/6.36883912479331826262, 63/4.42705098312484413015/7.33708496134517229592, 64/5.14057647468726486295/5.23519715367906091075, 65/4.17705098312484324197/5.50281372100887899990, 66/4.42705098312484324197/4.53456788445702407842, 67/3.92705098312484368606/3.66854248067258525978} \coordinate (p-\i) at (\x,\y); %Innenflächen als \filldraw[yellow,shift={+(0.1,0.1)}] (p-1) -- (p-2) -- (p-3) -- cycle; %shift funktioniert nicht mit (p-i) Koordinaten \filldraw[shift={+(-0.30,-1.01)},fill=WhiteSmoke,line width=0] (0.00,0.00) -- (1.00,0.00) -- (0.50,0.87) -- cycle; \filldraw[shift={+(-0.15,-0.93)},fill=WhiteSmoke,line width=0] (1.00,0.00) -- (1.50,0.87) -- (0.50,0.87) -- cycle; \filldraw[shift={+(0.00,-1.01)},fill=WhiteSmoke,line width=0] (1.00,0.00) -- (2.00,0.00) -- (1.50,0.87) -- cycle; \filldraw[shift={+(0.15,-0.93)},fill=WhiteSmoke,line width=0] (1.50,0.87) -- (2.00,0.00) -- (2.50,0.87) -- cycle; \filldraw[shift={+(0.30,-1.01)},fill=WhiteSmoke,line width=0] (2.00,0.00) -- (3.00,0.00) -- (2.50,0.87) -- cycle; \filldraw[shift={+(-0.34,-0.83)},fill=MintCream,line width=0] (0.00,0.00) -- (0.50,0.87) -- (0.75,1.83) -- (0.25,0.97) -- cycle; \filldraw[shift={+(-0.50,-0.93)},fill=WhiteSmoke,line width=0] (0.00,0.00) -- (0.25,0.97) -- (-0.71,0.70) -- cycle; \filldraw[shift={+(-0.71,-0.72)},fill=WhiteSmoke,line width=0] (-0.46,1.67) -- (-1.43,1.40) -- (-0.71,0.70) -- cycle; \filldraw[shift={+(-0.54,-0.77)},fill=WhiteSmoke,line width=0] (-0.46,1.67) -- (-0.71,0.70) -- (0.25,0.97) -- cycle; \filldraw[shift={+(-0.66,-0.51)},fill=MintCream,line width=0] (-0.46,1.67) -- (0.04,2.53) -- (-0.93,2.27) -- (-1.43,1.40) -- cycle; \filldraw[shift={+(-0.88,-0.51)},fill=WhiteSmoke,line width=0] (-1.43,1.40) -- (-0.93,2.27) -- (-1.93,2.27) -- cycle; \filldraw[shift={+(-0.41,-0.58)},fill=MintCream,line width=0] (-0.46,1.67) -- (0.25,0.97) -- (0.75,1.83) -- (0.04,2.53) -- cycle; \filldraw[shift={+(-0.27,-0.38)},fill=WhiteSmoke,line width=0] (0.75,1.83) -- (1.00,2.80) -- (0.04,2.53) -- cycle; \filldraw[shift={+(-0.43,-0.25)},fill=Snow,line width=0] (0.04,2.53) -- (1.00,2.80) -- (0.50,3.67) -- (-0.21,2.97) -- (-0.93,2.27) -- cycle; \filldraw[shift={+(-0.77,-0.32)},fill=MintCream,line width=0] (-0.93,2.27) -- (-0.21,2.97) -- (-1.21,2.97) -- (-1.93,2.27) -- cycle; \filldraw[shift={+(0.00,-0.52)},fill=Honeydew,line width=0] (0.75,1.83) -- (0.50,0.87) -- (1.50,0.87) -- (2.50,0.87) -- (2.25,1.83) -- (2.00,2.80) -- (1.50,3.67) -- (1.00,2.80) -- cycle; \filldraw[shift={+(-0.51,0.30)},fill=LightCyan,line width=0] (0.50,3.67) -- (1.00,4.53) -- (0.29,5.24) -- (-0.43,5.94) -- (-0.93,5.07) -- (-1.43,4.20) -- (-0.46,3.94) -- cycle; \filldraw[shift={+(-0.47,-0.04)},fill=WhiteSmoke,line width=0] (0.50,3.67) -- (-0.46,3.94) -- (-0.21,2.97) -- cycle; \filldraw[shift={+(-0.15,0.00)},fill=MintCream,line width=0] (1.00,2.80) -- (1.50,3.67) -- (1.00,4.53) -- (0.50,3.67) -- cycle; \filldraw[shift={+(-1.03,0.25)},fill=WhiteSmoke,line width=0] (-2.43,4.20) -- (-1.43,4.20) -- (-1.93,5.07) -- cycle; \filldraw[shift={+(-0.88,0.12)},fill=MintCream,line width=0] (-2.43,4.20) -- (-1.46,3.94) -- (-0.46,3.94) -- (-1.43,4.20) -- cycle; \filldraw[shift={+(-0.88,0.33)},fill=WhiteSmoke,line width=0] (-1.43,4.20) -- (-0.93,5.07) -- (-1.93,5.07) -- cycle; \filldraw[shift={+(-1.06,0.04)},fill=WhiteSmoke,line width=0] (-2.43,4.20) -- (-2.18,3.24) -- (-1.46,3.94) -- cycle; \filldraw[shift={+(-0.94,-0.09)},fill=WhiteSmoke,line width=0] (-1.46,3.94) -- (-2.18,3.24) -- (-1.21,2.97) -- cycle; \filldraw[shift={+(-0.98,-0.25)},fill=WhiteSmoke,line width=0] (-2.18,3.24) -- (-1.93,2.27) -- (-1.21,2.97) -- cycle; \filldraw[shift={+(-0.70,-0.06)},fill=MintCream,line width=0] (-1.46,3.94) -- (-1.21,2.97) -- (-0.21,2.97) -- (-0.46,3.94) -- cycle; \filldraw[shift={+(-0.73,0.77)},fill=WhiteSmoke,line width=0] (-0.93,6.80) -- (-1.43,5.94) -- (-0.43,5.94) -- cycle; \filldraw[shift={+(-0.73,0.59)},fill=WhiteSmoke,line width=0] (-1.43,5.94) -- (-0.93,5.07) -- (-0.43,5.94) -- cycle; \filldraw[shift={+(-0.88,0.51)},fill=WhiteSmoke,line width=0] (-1.43,5.94) -- (-1.93,5.07) -- (-0.93,5.07) -- cycle; \filldraw[shift={+(-0.55,0.70)},fill=MintCream,line width=0] (-0.93,6.80) -- (-0.43,5.94) -- (0.29,5.24) -- (-0.21,6.10) -- cycle; \filldraw[shift={+(-0.56,0.90)},fill=WhiteSmoke,line width=0] (-0.93,6.80) -- (-0.21,6.10) -- (0.04,7.07) -- cycle; \filldraw[shift={+(-0.39,0.85)},fill=WhiteSmoke,line width=0] (-0.21,6.10) -- (0.75,6.37) -- (0.04,7.07) -- cycle; \filldraw[shift={+(-0.29,0.64)},fill=MintCream,line width=0] (-0.21,6.10) -- (0.29,5.24) -- (1.25,5.50) -- (0.75,6.37) -- cycle; \filldraw[shift={+(-0.27,0.98)},fill=WhiteSmoke,line width=0] (0.04,7.07) -- (0.75,6.37) -- (1.00,7.34) -- cycle; \filldraw[shift={+(-0.11,0.83)},fill=MintCream,line width=0] (0.75,6.37) -- (1.25,5.50) -- (1.50,6.47) -- (1.00,7.34) -- cycle; \filldraw[shift={+(-0.00,1.01)},fill=WhiteSmoke,line width=0] (1.00,7.34) -- (1.50,6.47) -- (2.00,7.34) -- cycle; \filldraw[shift={+(-0.20,0.43)},fill=WhiteSmoke,line width=0] (0.29,5.24) -- (1.00,4.53) -- (1.25,5.50) -- cycle; \filldraw[shift={+(-0.00,0.41)},fill=Ivory,line width=0] (1.25,5.50) -- (1.00,4.53) -- (1.50,3.67) -- (2.00,4.53) -- (1.75,5.50) -- (1.50,6.47) -- cycle; \filldraw[shift={+(0.11,0.83)},fill=MintCream,line width=0] (1.50,6.47) -- (1.75,5.50) -- (2.25,6.37) -- (2.00,7.34) -- cycle; \filldraw[shift={+(0.34,-0.83)},fill=MintCream,line width=0] (2.75,0.97) -- (2.25,1.83) -- (2.50,0.87) -- (3.00,0.00) -- cycle; \filldraw[shift={+(0.50,-0.93)},fill=WhiteSmoke,line width=0] (2.75,0.97) -- (3.00,0.00) -- (3.71,0.70) -- cycle; \filldraw[shift={+(0.54,-0.77)},fill=WhiteSmoke,line width=0] (2.75,0.97) -- (3.71,0.70) -- (3.46,1.67) -- cycle; \filldraw[shift={+(0.71,-0.72)},fill=WhiteSmoke,line width=0] (3.71,0.70) -- (4.43,1.40) -- (3.46,1.67) -- cycle; \filldraw[shift={+(0.41,-0.58)},fill=MintCream,line width=0] (2.75,0.97) -- (3.46,1.67) -- (2.96,2.53) -- (2.25,1.83) -- cycle; \filldraw[shift={+(0.66,-0.51)},fill=MintCream,line width=0] (3.46,1.67) -- (4.43,1.40) -- (3.93,2.27) -- (2.96,2.53) -- cycle; \filldraw[shift={+(0.88,-0.51)},fill=WhiteSmoke,line width=0] (4.43,1.40) -- (4.93,2.27) -- (3.93,2.27) -- cycle; \filldraw[shift={+(0.77,-0.32)},fill=MintCream,line width=0] (3.93,2.27) -- (4.93,2.27) -- (4.21,2.97) -- (3.21,2.97) -- cycle; \filldraw[shift={+(0.27,-0.38)},fill=WhiteSmoke,line width=0] (2.25,1.83) -- (2.96,2.53) -- (2.00,2.80) -- cycle; \filldraw[shift={+(0.43,-0.25)},fill=Snow,line width=0] (2.96,2.53) -- (3.93,2.27) -- (3.21,2.97) -- (2.50,3.67) -- (2.00,2.80) -- cycle; \filldraw[shift={+(0.47,-0.04)},fill=WhiteSmoke,line width=0] (2.50,3.67) -- (3.21,2.97) -- (3.46,3.94) -- cycle; \filldraw[shift={+(0.51,0.30)},fill=LightCyan,line width=0] (2.50,3.67) -- (3.46,3.94) -- (4.43,4.20) -- (3.93,5.07) -- (3.43,5.94) -- (2.71,5.24) -- (2.00,4.53) -- cycle; \filldraw[shift={+(1.03,0.25)},fill=WhiteSmoke,line width=0] (5.43,4.20) -- (4.93,5.07) -- (4.43,4.20) -- cycle; \filldraw[shift={+(0.88,0.33)},fill=WhiteSmoke,line width=0] (4.43,4.20) -- (4.93,5.07) -- (3.93,5.07) -- cycle; \filldraw[shift={+(0.88,0.12)},fill=MintCream,line width=0] (5.43,4.20) -- (4.43,4.20) -- (3.46,3.94) -- (4.46,3.94) -- cycle; \filldraw[shift={+(1.06,0.04)},fill=WhiteSmoke,line width=0] (5.43,4.20) -- (4.46,3.94) -- (5.18,3.24) -- cycle; \filldraw[shift={+(0.94,-0.09)},fill=WhiteSmoke,line width=0] (4.46,3.94) -- (4.21,2.97) -- (5.18,3.24) -- cycle; \filldraw[shift={+(0.70,-0.06)},fill=MintCream,line width=0] (4.46,3.94) -- (3.46,3.94) -- (3.21,2.97) -- (4.21,2.97) -- cycle; \filldraw[shift={+(0.98,-0.25)},fill=WhiteSmoke,line width=0] (5.18,3.24) -- (4.21,2.97) -- (4.93,2.27) -- cycle; \filldraw[shift={+(0.73,0.77)},fill=WhiteSmoke,line width=0] (3.93,6.80) -- (3.43,5.94) -- (4.43,5.94) -- cycle; \filldraw[shift={+(0.55,0.70)},fill=MintCream,line width=0] (3.93,6.80) -- (3.21,6.10) -- (2.71,5.24) -- (3.43,5.94) -- cycle; \filldraw[shift={+(0.73,0.59)},fill=WhiteSmoke,line width=0] (4.43,5.94) -- (3.43,5.94) -- (3.93,5.07) -- cycle; \filldraw[shift={+(0.88,0.51)},fill=WhiteSmoke,line width=0] (4.43,5.94) -- (3.93,5.07) -- (4.93,5.07) -- cycle; \filldraw[shift={+(0.56,0.90)},fill=WhiteSmoke,line width=0] (3.93,6.80) -- (2.96,7.07) -- (3.21,6.10) -- cycle; \filldraw[shift={+(0.39,0.85)},fill=WhiteSmoke,line width=0] (3.21,6.10) -- (2.96,7.07) -- (2.25,6.37) -- cycle; \filldraw[shift={+(0.27,0.98)},fill=WhiteSmoke,line width=0] (2.96,7.07) -- (2.00,7.34) -- (2.25,6.37) -- cycle; \filldraw[shift={+(0.29,0.64)},fill=MintCream,line width=0] (3.21,6.10) -- (2.25,6.37) -- (1.75,5.50) -- (2.71,5.24) -- cycle; \filldraw[shift={+(0.20,0.43)},fill=WhiteSmoke,line width=0] (2.71,5.24) -- (1.75,5.50) -- (2.00,4.53) -- cycle; \filldraw[shift={+(0.15,0.00)},fill=MintCream,line width=0] (2.00,2.80) -- (2.50,3.67) -- (2.00,4.53) -- (1.50,3.67) -- cycle; \end{tikzpicture} $ Graph #554: 104 Knoten, 104×Grad 4, 0 Überschneidungen, Gesamtfläche=77.76, 64·3+32·4+0·5+8·6+1·16+1*32 Drei-, Vier-, Fünfecke… 208 Kanten, minimal 0.99999999999998945288, maximal 1.00000000000001754152 $ %Eingabe war: % %No.554 % % % %D=35; P[1]=[0,0]; P[2]=[D,0]; A(2,1); L(3,1,2); L(4,3,2); L(5,4,2); M(6,3,4,blauerWinkel); N(7,6,4); A(1,6,ab(1,6,[1,7],"gespiegelt")); N(13,12,7); L(14,12,13); L(15,13,7); %A(11,14,ab(11,14,[1,15],"gespiegelt")); %A(20,28,ab(20,28,[1,28],"gespiegelt")); %A(33,43,ab(33,43,[1,4],[6,14],[16,54],"gespiegelt")); %A(5,56); R(5,56); A(5,58); R(5,58); A(15,60); R(15,60); A(15,66); R(15,66); % % %Ende der Eingabe. \begin{tikzpicture}[draw=grey,font=\sffamily\scriptsize] \definecolor{Ivory}{rgb}{1.00,1.00,0.94} \definecolor{LemonChiffon}{rgb}{1.00,0.98,0.80} \definecolor{MintCream}{rgb}{0.96,1.00,0.98} \definecolor{WhiteSmoke}{rgb}{0.96,0.96,0.96} %Koordinaten als \coordinate (p-1) at (0,0); \foreach \i/\x/\y in { 1/2.94062372341445854573/0.00000000000000000000, 2/3.94062372341445898982/0.00000000000000000000, 3/3.44062372341445854573/0.86602540378443859659, 4/4.44062372341445854573/0.86602540378443859659, 5/4.94062372341445854573/0.00000000000000000000, 6/3.66734007273799411664/1.83998623305295105901, 7/4.66734007273799456073/1.83998623305295105901, 8/2.21050707763873610645/0.68332253260170561227, 9/3.16734007273799411664/0.97396082926851257344, 10/2.43722342696227256553/1.65728336187021763060, 11/1.48039043186301455535/1.36664506520341122453, 12/2.93722342696227300962/2.52330876565465622718, 13/3.93722342696227256553/2.52330876565465755945, 14/3.43722342696227167735/3.38933416943909504582, 15/4.89405642206153146390/2.81394706232146285529, 16/0.06617686948991864659/2.78085862757650525978, 17/0.03308843474495972575/3.78031105540192546854, 18/0.91518384448828682398/3.30924026654981418005, 19/0.88209540974332789620/4.30869269437523438881, 20/0.00000000000000081205/4.77976348322734789775, 21/1.88110967077735558028/3.56805931165233536362, 22/1.84802123603239798477/4.56751173947775601647, 23/0.77328365067646664954/2.07375184638995824216, 24/1.03210269577898583471/3.03967767267902644335, 25/1.73920947696553418460/2.33257089149247942572, 26/2.58821645196390281995/2.86095253046578790190, 27/2.55512801721894566853/3.86040495829120944293, 28/2.81394706232146418756/4.82633078458027764412, 29/2.78085862757650126298/9.65421033715188947610, 30/3.78031105540192280401/9.68729877189684884797, 31/3.30924026654981195961/8.80520336215352017462, 32/4.30869269437523083610/8.83829179689848132284, 33/4.77976348322734612140/9.72038720664180821984, 34/3.56805931165233358726/7.83927753586445330569, 35/4.56751173947775246376/7.87236597060941178938, 36/2.07375184638995557762/8.94710355596534334666, 37/3.03967767267902377881/8.68828451086282171900, 38/2.33257089149247720528/7.98117772967627558955, 39/1.36664506520340900408/8.23999677477879366450, 40/2.86095253046578745781/7.13217075467790539989, 41/3.86040495829120944293/7.16525918942286565994, 42/3.38933416943909460173/6.28316377967953876293, 43/4.82633078458027853230/6.90644014432034847317, 44/0.00000000000000000000/6.77976348322734789775, 45/0.00000000000000040602/5.77976348322734878593, 46/0.86602540378443804148/6.27976348322734878593, 47/0.86602540378443881863/5.27976348322734878593, 48/1.83998623305295194719/6.05304713390381277094, 49/1.83998623305295327945/5.05304713390381365912, 50/0.68332253260170516818/7.50988012900307122521, 51/0.97396082926851113015/6.55304713390381277094, 52/1.65728336187021652037/7.28316377967953521022, 53/2.52330876565465578309/6.78316377967953521022, 54/2.52330876565465800354/5.78316377967953521022, 55/6.93952857906531850318/0.06617686948991702289, 56/5.94007615123989740624/0.03308843474495688775, 57/6.41114694009201002700/0.91518384448828393740, 58/5.41169451226658626553/0.88209540974333189300, 59/6.15232789498948307028/1.88110967077736379593, 60/5.15287546716406286151/1.84802123603240042726, 61/7.64663536025186640899/0.77328365067647186759, 62/6.68070953396279687553/1.03210269577898716697, 63/7.38781631514934034044/1.73920947696554195616, 64/8.35374214143840809754/1.48039043186302987642, 65/6.85943467617603364062/2.58821645196390548449, 66/5.85998224835061254367/2.55512801721894877716, 67/6.33105303720272072354/3.43722342696227167735, 68/9.72038720664181710163/2.94062372341446831570, 69/9.72038720664181532527/3.94062372341446431889, 70/8.85436180285737783890/3.44062372341447009205, 71/8.85436180285737428619/4.44062372341446920387, 72/9.72038720664181532527/4.94062372341447098023, 73/7.88040097358886271195/3.66734007273799678117, 74/7.88040097358886271195/4.66734007273800166615, 75/9.03706467404011171141/2.21050707763874454415, 76/8.74642637737330552739/3.16734007273799766935, 77/8.06310384477160191352/2.43722342696227745051, 78/7.19707844098716087444/2.93722342696227878278, 79/7.19707844098715820991/3.93722342696227745051, 80/6.90644014432034847317/4.89405642206153412843, 81/6.77976348322734878593/9.72038720664181177256, 82/5.77976348322734878593/9.72038720664180821984, 83/6.27976348322734878593/8.85436180285737073348, 84/5.27976348322735056229/8.85436180285737073348, 85/6.05304713390381365912/7.88040097358885827106, 86/5.05304713390381543547/7.88040097358885827106, 87/7.50988012900307122521/9.03706467404010815869, 88/6.55304713390381365912/8.74642637737329842196, 89/7.28316377967953609840/8.06310384477159658445, 90/8.23999677477879544085/8.35374214143840809754, 91/6.78316377967953787476/7.19707844098715465719, 92/5.78316377967953609840/7.19707844098715820991, 93/6.28316377967954142747/6.33105303720271717083, 94/9.65421033715189125246/6.93952857906531495047, 95/9.68729877189685240069/5.94007615123989118899, 96/8.80520336215352728004/6.41114694009200203340, 97/8.83829179689848842827/5.41169451226658537735, 98/7.83927753586445863476/6.15232789498947596485, 99/7.87236597060941711845/5.15287546716405753244, 100/8.94710355596534334666/7.64663536025185663902, 101/8.68828451086282882443/6.68070953396278799374, 102/7.98117772967627558955/7.38781631514933323501, 103/7.13217075467790806442/6.85943467617602209430, 104/7.16525918942286832447/5.85998224835060721460} \coordinate (p-\i) at (\x,\y); %Innenflächen als \filldraw[yellow,shift={+(0.1,0.1)}] (p-1) -- (p-2) -- (p-3) -- cycle; %shift funktioniert nicht mit (p-i) Koordinaten \filldraw[shift={+(-0.43,-1.37)},fill=WhiteSmoke,line width=0] (0.00,0.00) -- (1.00,0.00) -- (0.50,0.87) -- cycle; \filldraw[shift={+(-0.28,-1.28)},fill=WhiteSmoke,line width=0] (1.00,0.00) -- (1.50,0.87) -- (0.50,0.87) -- cycle; \filldraw[shift={+(-0.13,-1.37)},fill=WhiteSmoke,line width=0] (1.00,0.00) -- (2.00,0.00) -- (1.50,0.87) -- cycle; \filldraw[shift={+(0.17,-1.37)},fill=WhiteSmoke,line width=0] (2.00,0.00) -- (3.00,0.03) -- (2.47,0.88) -- cycle; \filldraw[shift={+(-0.24,-1.05)},fill=MintCream,line width=0] (0.50,0.87) -- (1.50,0.87) -- (1.73,1.84) -- (0.73,1.84) -- cycle; \filldraw[shift={+(-0.63,-1.29)},fill=WhiteSmoke,line width=0] (0.00,0.00) -- (0.23,0.97) -- (-0.73,0.68) -- cycle; \filldraw[shift={+(-0.47,-1.18)},fill=MintCream,line width=0] (0.00,0.00) -- (0.50,0.87) -- (0.73,1.84) -- (0.23,0.97) -- cycle; \filldraw[shift={+(-0.85,-1.09)},fill=WhiteSmoke,line width=0] (-0.50,1.66) -- (-1.46,1.37) -- (-0.73,0.68) -- cycle; \filldraw[shift={+(-0.68,-1.13)},fill=WhiteSmoke,line width=0] (-0.50,1.66) -- (-0.73,0.68) -- (0.23,0.97) -- cycle; \filldraw[shift={+(-0.73,-0.75)},fill=Ivory,line width=0] (-0.50,1.66) -- (-0.00,2.52) -- (0.50,3.39) -- (-0.35,2.86) -- (-1.20,2.33) -- (-1.46,1.37) -- cycle; \filldraw[shift={+(-1.06,-0.88)},fill=WhiteSmoke,line width=0] (-1.46,1.37) -- (-1.20,2.33) -- (-2.17,2.07) -- cycle; \filldraw[shift={+(-0.54,-0.93)},fill=MintCream,line width=0] (-0.50,1.66) -- (0.23,0.97) -- (0.73,1.84) -- (-0.00,2.52) -- cycle; \filldraw[shift={+(-0.32,-0.80)},fill=MintCream,line width=0] (-0.00,2.52) -- (0.73,1.84) -- (1.73,1.84) -- (1.00,2.52) -- cycle; \filldraw[shift={+(-0.43,-0.61)},fill=WhiteSmoke,line width=0] (-0.00,2.52) -- (1.00,2.52) -- (0.50,3.39) -- cycle; \filldraw[shift={+(-0.60,-0.45)},fill=WhiteSmoke,line width=0] (0.50,3.39) -- (-0.39,3.86) -- (-0.35,2.86) -- cycle; \filldraw[shift={+(-0.11,-0.74)},fill=WhiteSmoke,line width=0] (1.00,2.52) -- (1.73,1.84) -- (1.95,2.81) -- cycle; \filldraw[shift={+(0.02,-1.05)},fill=Ivory,line width=0] (1.95,2.81) -- (1.73,1.84) -- (1.50,0.87) -- (2.00,0.00) -- (2.47,0.88) -- (2.21,1.85) -- cycle; \filldraw[shift={+(0.13,-0.74)},fill=WhiteSmoke,line width=0] (1.95,2.81) -- (2.21,1.85) -- (2.92,2.56) -- cycle; \filldraw[shift={+(-1.36,-0.47)},fill=WhiteSmoke,line width=0] (-2.87,2.78) -- (-2.03,3.31) -- (-2.91,3.78) -- cycle; \filldraw[shift={+(-1.17,-0.51)},fill=MintCream,line width=0] (-2.87,2.78) -- (-1.91,3.04) -- (-1.06,3.57) -- (-2.03,3.31) -- cycle; \filldraw[shift={+(-1.28,-0.32)},fill=WhiteSmoke,line width=0] (-2.91,3.78) -- (-2.03,3.31) -- (-2.06,4.31) -- cycle; \filldraw[shift={+(-1.04,-0.28)},fill=MintCream,line width=0] (-2.03,3.31) -- (-1.06,3.57) -- (-1.09,4.57) -- (-2.06,4.31) -- cycle; \filldraw[shift={+(-1.37,-0.17)},fill=WhiteSmoke,line width=0] (-2.91,3.78) -- (-2.06,4.31) -- (-2.94,4.78) -- cycle; \filldraw[shift={+(-1.05,-0.02)},fill=Ivory,line width=0] (-2.06,4.31) -- (-1.09,4.57) -- (-0.13,4.83) -- (-1.10,5.05) -- (-2.07,5.28) -- (-2.94,4.78) -- cycle; \filldraw[shift={+(-1.37,0.13)},fill=WhiteSmoke,line width=0] (-2.94,4.78) -- (-2.07,5.28) -- (-2.94,5.78) -- cycle; \filldraw[shift={+(-0.79,-0.34)},fill=MintCream,line width=0] (-1.06,3.57) -- (-0.35,2.86) -- (-0.39,3.86) -- (-1.09,4.57) -- cycle; \filldraw[shift={+(-1.27,-0.67)},fill=WhiteSmoke,line width=0] (-2.87,2.78) -- (-2.17,2.07) -- (-1.91,3.04) -- cycle; \filldraw[shift={+(-1.10,-0.71)},fill=WhiteSmoke,line width=0] (-2.17,2.07) -- (-1.20,2.33) -- (-1.91,3.04) -- cycle; \filldraw[shift={+(-0.92,-0.57)},fill=MintCream,line width=0] (-1.06,3.57) -- (-1.91,3.04) -- (-1.20,2.33) -- (-0.35,2.86) -- cycle; \filldraw[shift={+(-0.74,-0.13)},fill=WhiteSmoke,line width=0] (-1.09,4.57) -- (-0.39,3.86) -- (-0.13,4.83) -- cycle; \filldraw[shift={+(-0.74,0.11)},fill=WhiteSmoke,line width=0] (-0.13,4.83) -- (-0.42,5.78) -- (-1.10,5.05) -- cycle; \filldraw[shift={+(-0.47,1.36)},fill=WhiteSmoke,line width=0] (-0.16,9.65) -- (0.37,8.81) -- (0.84,9.69) -- cycle; \filldraw[shift={+(-0.51,1.17)},fill=MintCream,line width=0] (-0.16,9.65) -- (0.10,8.69) -- (0.63,7.84) -- (0.37,8.81) -- cycle; \filldraw[shift={+(-0.32,1.28)},fill=WhiteSmoke,line width=0] (0.84,9.69) -- (0.37,8.81) -- (1.37,8.84) -- cycle; \filldraw[shift={+(-0.28,1.04)},fill=MintCream,line width=0] (0.37,8.81) -- (0.63,7.84) -- (1.63,7.87) -- (1.37,8.84) -- cycle; \filldraw[shift={+(-0.17,1.37)},fill=WhiteSmoke,line width=0] (0.84,9.69) -- (1.37,8.84) -- (1.84,9.72) -- cycle; \filldraw[shift={+(-0.02,1.05)},fill=Ivory,line width=0] (1.37,8.84) -- (1.63,7.87) -- (1.89,6.91) -- (2.11,7.88) -- (2.34,8.85) -- (1.84,9.72) -- cycle; \filldraw[shift={+(0.13,1.37)},fill=WhiteSmoke,line width=0] (1.84,9.72) -- (2.34,8.85) -- (2.84,9.72) -- cycle; \filldraw[shift={+(-0.34,0.79)},fill=MintCream,line width=0] (0.63,7.84) -- (-0.08,7.13) -- (0.92,7.17) -- (1.63,7.87) -- cycle; \filldraw[shift={+(-0.67,1.27)},fill=WhiteSmoke,line width=0] (-0.16,9.65) -- (-0.87,8.95) -- (0.10,8.69) -- cycle; \filldraw[shift={+(-0.71,1.10)},fill=WhiteSmoke,line width=0] (-0.87,8.95) -- (-0.61,7.98) -- (0.10,8.69) -- cycle; \filldraw[shift={+(-0.88,1.06)},fill=WhiteSmoke,line width=0] (-0.87,8.95) -- (-1.57,8.24) -- (-0.61,7.98) -- cycle; \filldraw[shift={+(-1.09,0.85)},fill=WhiteSmoke,line width=0] (-1.57,8.24) -- (-2.26,7.51) -- (-1.28,7.28) -- cycle; \filldraw[shift={+(-0.57,0.92)},fill=MintCream,line width=0] (0.63,7.84) -- (0.10,8.69) -- (-0.61,7.98) -- (-0.08,7.13) -- cycle; \filldraw[shift={+(-0.75,0.73)},fill=Ivory,line width=0] (-0.61,7.98) -- (-1.57,8.24) -- (-1.28,7.28) -- (-0.42,6.78) -- (0.45,6.28) -- (-0.08,7.13) -- cycle; \filldraw[shift={+(-0.45,0.60)},fill=WhiteSmoke,line width=0] (-0.08,7.13) -- (0.45,6.28) -- (0.92,7.17) -- cycle; \filldraw[shift={+(-0.61,0.43)},fill=WhiteSmoke,line width=0] (0.45,6.28) -- (-0.42,6.78) -- (-0.42,5.78) -- cycle; \filldraw[shift={+(-0.13,0.74)},fill=WhiteSmoke,line width=0] (1.63,7.87) -- (0.92,7.17) -- (1.89,6.91) -- cycle; \filldraw[shift={+(0.11,0.74)},fill=WhiteSmoke,line width=0] (1.89,6.91) -- (2.84,7.20) -- (2.11,7.88) -- cycle; \filldraw[shift={+(-1.37,0.43)},fill=WhiteSmoke,line width=0] (-2.94,6.78) -- (-2.94,5.78) -- (-2.07,6.28) -- cycle; \filldraw[shift={+(-1.28,0.28)},fill=WhiteSmoke,line width=0] (-2.94,5.78) -- (-2.07,5.28) -- (-2.07,6.28) -- cycle; \filldraw[shift={+(-1.05,0.24)},fill=MintCream,line width=0] (-2.07,6.28) -- (-2.07,5.28) -- (-1.10,5.05) -- (-1.10,6.05) -- cycle; \filldraw[shift={+(-0.93,0.54)},fill=MintCream,line width=0] (-1.10,6.05) -- (-0.42,6.78) -- (-1.28,7.28) -- (-1.97,6.55) -- cycle; \filldraw[shift={+(-1.29,0.63)},fill=WhiteSmoke,line width=0] (-2.94,6.78) -- (-1.97,6.55) -- (-2.26,7.51) -- cycle; \filldraw[shift={+(-1.18,0.47)},fill=MintCream,line width=0] (-2.94,6.78) -- (-2.07,6.28) -- (-1.10,6.05) -- (-1.97,6.55) -- cycle; \filldraw[shift={+(-1.13,0.68)},fill=WhiteSmoke,line width=0] (-2.26,7.51) -- (-1.97,6.55) -- (-1.28,7.28) -- cycle; \filldraw[shift={+(-0.80,0.32)},fill=MintCream,line width=0] (-1.10,6.05) -- (-1.10,5.05) -- (-0.42,5.78) -- (-0.42,6.78) -- cycle; \filldraw[shift={+(0.47,-1.36)},fill=WhiteSmoke,line width=0] (4.00,0.07) -- (3.47,0.92) -- (3.00,0.03) -- cycle; \filldraw[shift={+(0.51,-1.17)},fill=MintCream,line width=0] (4.00,0.07) -- (3.74,1.03) -- (3.21,1.88) -- (3.47,0.92) -- cycle; \filldraw[shift={+(0.32,-1.28)},fill=WhiteSmoke,line width=0] (3.00,0.03) -- (3.47,0.92) -- (2.47,0.88) -- cycle; \filldraw[shift={+(0.28,-1.04)},fill=MintCream,line width=0] (3.47,0.92) -- (3.21,1.88) -- (2.21,1.85) -- (2.47,0.88) -- cycle; \filldraw[shift={+(0.34,-0.79)},fill=MintCream,line width=0] (3.21,1.88) -- (3.92,2.59) -- (2.92,2.56) -- (2.21,1.85) -- cycle; \filldraw[shift={+(0.67,-1.27)},fill=WhiteSmoke,line width=0] (4.00,0.07) -- (4.71,0.77) -- (3.74,1.03) -- cycle; \filldraw[shift={+(0.71,-1.10)},fill=WhiteSmoke,line width=0] (4.71,0.77) -- (4.45,1.74) -- (3.74,1.03) -- cycle; \filldraw[shift={+(0.88,-1.06)},fill=WhiteSmoke,line width=0] (4.71,0.77) -- (5.41,1.48) -- (4.45,1.74) -- cycle; \filldraw[shift={+(1.09,-0.85)},fill=WhiteSmoke,line width=0] (5.41,1.48) -- (6.10,2.21) -- (5.12,2.44) -- cycle; \filldraw[shift={+(0.57,-0.92)},fill=MintCream,line width=0] (3.21,1.88) -- (3.74,1.03) -- (4.45,1.74) -- (3.92,2.59) -- cycle; \filldraw[shift={+(0.75,-0.73)},fill=Ivory,line width=0] (4.45,1.74) -- (5.41,1.48) -- (5.12,2.44) -- (4.26,2.94) -- (3.39,3.44) -- (3.92,2.59) -- cycle; \filldraw[shift={+(0.45,-0.60)},fill=WhiteSmoke,line width=0] (3.92,2.59) -- (3.39,3.44) -- (2.92,2.56) -- cycle; \filldraw[shift={+(0.61,-0.43)},fill=WhiteSmoke,line width=0] (3.39,3.44) -- (4.26,2.94) -- (4.26,3.94) -- cycle; \filldraw[shift={+(1.37,-0.43)},fill=WhiteSmoke,line width=0] (6.78,2.94) -- (6.78,3.94) -- (5.91,3.44) -- cycle; \filldraw[shift={+(1.28,-0.28)},fill=WhiteSmoke,line width=0] (6.78,3.94) -- (5.91,4.44) -- (5.91,3.44) -- cycle; \filldraw[shift={+(1.37,-0.13)},fill=WhiteSmoke,line width=0] (6.78,3.94) -- (6.78,4.94) -- (5.91,4.44) -- cycle; \filldraw[shift={+(1.37,0.17)},fill=WhiteSmoke,line width=0] (6.78,4.94) -- (6.75,5.94) -- (5.90,5.41) -- cycle; \filldraw[shift={+(1.05,-0.24)},fill=MintCream,line width=0] (5.91,3.44) -- (5.91,4.44) -- (4.94,4.67) -- (4.94,3.67) -- cycle; \filldraw[shift={+(0.93,-0.54)},fill=MintCream,line width=0] (4.94,3.67) -- (4.26,2.94) -- (5.12,2.44) -- (5.81,3.17) -- cycle; \filldraw[shift={+(1.05,0.02)},fill=Ivory,line width=0] (5.91,4.44) -- (6.78,4.94) -- (5.90,5.41) -- (4.93,5.15) -- (3.97,4.89) -- (4.94,4.67) -- cycle; \filldraw[shift={+(1.29,-0.63)},fill=WhiteSmoke,line width=0] (6.78,2.94) -- (5.81,3.17) -- (6.10,2.21) -- cycle; \filldraw[shift={+(1.18,-0.47)},fill=MintCream,line width=0] (6.78,2.94) -- (5.91,3.44) -- (4.94,3.67) -- (5.81,3.17) -- cycle; \filldraw[shift={+(1.13,-0.68)},fill=WhiteSmoke,line width=0] (6.10,2.21) -- (5.81,3.17) -- (5.12,2.44) -- cycle; \filldraw[shift={+(0.80,-0.32)},fill=MintCream,line width=0] (4.94,3.67) -- (4.94,4.67) -- (4.26,3.94) -- (4.26,2.94) -- cycle; \filldraw[shift={+(0.74,-0.11)},fill=WhiteSmoke,line width=0] (4.94,4.67) -- (3.97,4.89) -- (4.26,3.94) -- cycle; \filldraw[shift={+(0.00,0.00)},fill=LemonChiffon,line width=0] (4.22,5.86) -- (3.34,6.33) -- (2.84,7.20) -- (1.89,6.91) -- (0.92,7.17) -- (0.45,6.28) -- (-0.42,5.78) -- (-0.13,4.83) -- (-0.39,3.86) -- (0.50,3.39) -- (1.00,2.52) -- (1.95,2.81) -- (2.92,2.56) -- (3.39,3.44) -- (4.26,3.94) -- (3.97,4.89) -- cycle; \filldraw[shift={+(0.43,1.37)},fill=WhiteSmoke,line width=0] (3.84,9.72) -- (2.84,9.72) -- (3.34,8.85) -- cycle; \filldraw[shift={+(0.28,1.28)},fill=WhiteSmoke,line width=0] (2.84,9.72) -- (2.34,8.85) -- (3.34,8.85) -- cycle; \filldraw[shift={+(0.24,1.05)},fill=MintCream,line width=0] (3.34,8.85) -- (2.34,8.85) -- (2.11,7.88) -- (3.11,7.88) -- cycle; \filldraw[shift={+(0.54,0.93)},fill=MintCream,line width=0] (3.11,7.88) -- (3.84,7.20) -- (4.34,8.06) -- (3.61,8.75) -- cycle; \filldraw[shift={+(0.63,1.29)},fill=WhiteSmoke,line width=0] (3.84,9.72) -- (3.61,8.75) -- (4.57,9.04) -- cycle; \filldraw[shift={+(0.47,1.18)},fill=MintCream,line width=0] (3.84,9.72) -- (3.34,8.85) -- (3.11,7.88) -- (3.61,8.75) -- cycle; \filldraw[shift={+(0.68,1.13)},fill=WhiteSmoke,line width=0] (4.57,9.04) -- (3.61,8.75) -- (4.34,8.06) -- cycle; \filldraw[shift={+(0.85,1.09)},fill=WhiteSmoke,line width=0] (4.57,9.04) -- (4.34,8.06) -- (5.30,8.35) -- cycle; \filldraw[shift={+(0.32,0.80)},fill=MintCream,line width=0] (3.11,7.88) -- (2.11,7.88) -- (2.84,7.20) -- (3.84,7.20) -- cycle; \filldraw[shift={+(0.43,0.61)},fill=WhiteSmoke,line width=0] (3.84,7.20) -- (2.84,7.20) -- (3.34,6.33) -- cycle; \filldraw[shift={+(1.36,0.47)},fill=WhiteSmoke,line width=0] (6.71,6.94) -- (5.86,6.41) -- (6.75,5.94) -- cycle; \filldraw[shift={+(1.28,0.32)},fill=WhiteSmoke,line width=0] (6.75,5.94) -- (5.86,6.41) -- (5.90,5.41) -- cycle; \filldraw[shift={+(1.04,0.28)},fill=MintCream,line width=0] (5.86,6.41) -- (4.90,6.15) -- (4.93,5.15) -- (5.90,5.41) -- cycle; \filldraw[shift={+(0.92,0.57)},fill=MintCream,line width=0] (5.75,6.68) -- (5.04,7.39) -- (4.19,6.86) -- (4.90,6.15) -- cycle; \filldraw[shift={+(1.27,0.67)},fill=WhiteSmoke,line width=0] (6.01,7.65) -- (5.75,6.68) -- (6.71,6.94) -- cycle; \filldraw[shift={+(1.17,0.51)},fill=MintCream,line width=0] (5.75,6.68) -- (4.90,6.15) -- (5.86,6.41) -- (6.71,6.94) -- cycle; \filldraw[shift={+(1.10,0.71)},fill=WhiteSmoke,line width=0] (6.01,7.65) -- (5.04,7.39) -- (5.75,6.68) -- cycle; \filldraw[shift={+(1.06,0.88)},fill=WhiteSmoke,line width=0] (6.01,7.65) -- (5.30,8.35) -- (5.04,7.39) -- cycle; \filldraw[shift={+(0.79,0.34)},fill=MintCream,line width=0] (4.19,6.86) -- (4.22,5.86) -- (4.93,5.15) -- (4.90,6.15) -- cycle; \filldraw[shift={+(0.73,0.75)},fill=Ivory,line width=0] (5.04,7.39) -- (5.30,8.35) -- (4.34,8.06) -- (3.84,7.20) -- (3.34,6.33) -- (4.19,6.86) -- cycle; \filldraw[shift={+(0.74,0.13)},fill=WhiteSmoke,line width=0] (4.22,5.86) -- (3.97,4.89) -- (4.93,5.15) -- cycle; \filldraw[shift={+(0.60,0.45)},fill=WhiteSmoke,line width=0] (4.19,6.86) -- (3.34,6.33) -- (4.22,5.86) -- cycle; %gefüllte Winkel als \fill[red!20] (p-1) -- +(0:0.3 cm) arc (0:60:0.3 cm) -- cycle; %Punkte als \fill[red] (p-1) circle (1.125pt) %einzustellende Kanten als \draw[green] (p-1) -- (p-2); %nicht passende Kanten als \draw[magenta,ultra thick,dash pattern=on 0.01cm off 0.09cm] (p-1) -- (p-2); %Winkel als \draw[->,red] (p-1) +(0:0.3 cm) arc (0:60:0.3 cm); %Punktnummern als \node[anchor=30] (P1) at (p-1) {1}; \end{tikzpicture} $ Graph #1621: 70 Knoten, 70×Grad 3, 0 Überschneidungen, Gesamtfläche=34.82, 0·3+14·4+21·5+1·28+1*21 Drei-, Vier-, Fünfecke… 105 Kanten, minimal 0.99999999999998134825, maximal 1.00000000000000244249 $ %Eingabe war: % %#1621 % % % % % %P[1]=[134.6994097973915,133.5843348289388]; P[2]=[134.6994097973915,83.58433482893881]; D=ab(1,2); A(2,1,Bew(1)); M(3,1,2,blauerWinkel); N(4,3,2); M(5,3,4,gruenerWinkel); M(6,5,3,orangerWinkel); N(7,6,4); A(1,2,ab(1,2,[3,12],"gespiegelt")); RA(7,12); %A(10,11,ab(5,6,[1,12])); %A(20,21,ab(5,6,[1,12])); %A(30,31,ab(5,6,[1,12])); %A(40,41,ab(5,6,[1,12])); %A(50,51,ab(5,6,[1,12])); %A(60,61,ab(5,6,[1,9],12)); %RA(5,68); RA(6,70); % % %Ende der Eingabe. \begin{tikzpicture}[draw=grey,font=\sffamily\scriptsize] \definecolor{MintCream}{rgb}{0.96,1.00,0.98} \definecolor{PaleGreen}{rgb}{0.59,0.98,0.59} \definecolor{Snow}{rgb}{1.00,0.98,0.98} %Koordinaten als \coordinate (p-1) at (0,0); \foreach \i/\x/\y in { 1/3.35225886262863292941/2.91635338743845373699, 2/3.35225886262863292941/1.91635338743845351495, 3/3.73702200004689943924/1.99333804190835217618, 4/3.73702200004689943924/0.99333804190835239822, 5/4.36716966090965996727/1.21686272001512496566, 6/4.80105340002721892034/0.31589385211270626375, 7/3.85225886262863337350/0.00000000000000042633, 8/2.96749572521036686368/1.99333804190835217618, 9/2.96749572521036686368/0.99333804190835195413, 10/2.33734806434760544747/1.21686272001512518770, 11/1.90346432523004693849/0.31589385211270554210, 12/2.85225886262863248533/0.00000000000000000000, 13/3.03327683977524165115/3.06996703350052957404, 14/2.25144535730721129241/2.44647723164179664579, 15/2.55153027615016148033/2.19365644447662333505, 16/1.76969879368213134363/1.57016664261789062884, 17/1.06492484840294143744/0.86073469658246826164, 18/2.07173849152724320888/2.79529631273017109550, 19/1.28990700905921240604/2.17180651087143772315, 20/1.07177499929855279959/2.80384114800086070574, 21/0.09684708711672897208/2.58132021404454858882, 22/0.44143504654420750999/1.64256617905049884243, 23/2.95449478617791649881/3.41513376305468563388, 24/1.97956687399609299050/3.63765469701100396804, 25/1.96900350975819615762/3.24540767755033865427, 26/0.99407559757637342646/3.46792861150665610026, 27/0.00000000000000000000/3.57661948648324745648, 28/2.14023921513874704203/3.99564032204577523899, 29/1.16531130295692442189/4.21816125600209179680, 30/1.52345279673024491807/4.78277087923867938457, 31/0.74162131426221489239/5.40626068109741630963, 32/0.22252093395631702966/4.55154739866507185297, 33/3.17523719505646750960/3.69193598862850880238, 34/2.74135345593891210925/4.59290485653093050189, 35/2.42809623734466573097/4.35660161080968677538, 36/1.99421249822711077471/5.25757047871210758672, 37/1.45939444877531165901/6.10253772895354273942, 38/3.12141545400530340260/4.69048654828496580649, 39/2.68753171488774755815/5.59145541618738572964, 40/3.35225886262864358756/5.66347746329658896514, 41/3.35225886262864669618/6.66347746329658896514, 42/2.36036331667773247034/6.53642146807109991613, 43/3.52928053020080589874/3.69193598862850747011, 44/3.96316426931836796044/4.59290485653092517282, 45/3.58310227125197622300/4.69048654828496314195, 46/4.01698601036953828469/5.59145541618738128875, 47/4.34415440857955914566/6.53642146807109281070, 48/4.27642148791261167418/4.35660161080967966996, 49/4.71030522703017329178/5.25757047871209781675, 50/5.18106492852703581775/4.78277087923866606189, 51/5.96289641099506972921/5.40626068109739765788, 52/5.24512327648197729246/6.10253772895353119310, 53/3.75002293907935380091/3.41513376305468341343, 54/4.72495085126117864149/3.63765469701099286581, 55/4.56427851011852769858/3.99564032204576680130, 56/5.53920642230035120690/4.21816125600207580959, 57/6.48199679130096129143/4.55154739866504964851, 58/4.73551421549907214370/3.24540767755032888431, 59/5.71044212768089742838/3.46792861150663878078, 60/5.63274272595871217106/2.80384114800084383035, 61/6.60767063814053567938/2.58132021404452460800, 62/6.70451772525727207608/3.57661948648322480793, 63/3.67124088548202509585/3.06996703350052646542, 64/4.45307236795005145780/2.44647723164178731992, 65/4.63277923373002309404/2.79529631273016088144, 66/5.41461071619804901189/2.17180651087142262412, 67/6.26308267871305002217/1.64256617905047908046, 68/4.15298744910710038170/2.19365644447661578553, 69/4.93481893157512629955/1.57016664261787819434, 70/5.63959287685431220893/0.86073469658245216340} \coordinate (p-\i) at (\x,\y); %Innenflächen als \filldraw[yellow,shift={+(0.1,0.1)}] (p-1) -- (p-2) -- (p-3) -- cycle; %shift funktioniert nicht mit (p-i) Koordinaten \filldraw[shift={+(-0.06,-0.41)},fill=MintCream,line width=0] (2.69,2.67) -- (2.31,1.75) -- (2.31,0.75) -- (2.69,1.67) -- cycle; \filldraw[shift={+(0.06,-0.41)},fill=MintCream,line width=0] (2.69,2.67) -- (2.69,1.67) -- (3.08,0.75) -- (3.08,1.75) -- cycle; \filldraw[shift={+(0.22,-0.73)},fill=Snow,line width=0] (3.08,1.75) -- (3.08,0.75) -- (3.19,-0.24) -- (4.14,0.07) -- (3.71,0.97) -- cycle; \filldraw[shift={+(0.43,-0.63)},fill=Snow,line width=0] (3.71,0.97) -- (4.14,0.07) -- (4.98,0.62) -- (4.28,1.33) -- (3.49,1.95) -- cycle; \filldraw[shift={+(0.00,0.00)},fill=PaleGreen,line width=0] (2.69,2.67) -- (3.08,1.75) -- (3.71,0.97) -- (3.49,1.95) -- (3.01,2.83) -- (3.97,2.55) -- (4.97,2.56) -- (4.08,3.00) -- (3.09,3.17) -- (3.91,3.75) -- (4.52,4.54) -- (3.62,4.11) -- (2.87,3.45) -- (2.92,4.45) -- (2.69,5.42) -- (2.46,4.45) -- (2.52,3.45) -- (1.77,4.11) -- (0.87,4.54) -- (1.48,3.75) -- (2.30,3.17) -- (1.31,3.00) -- (0.41,2.56) -- (1.41,2.55) -- (2.38,2.83) -- (1.89,1.95) -- (1.68,0.97) -- (2.31,1.75) -- cycle; \filldraw[shift={+(-0.22,-0.73)},fill=Snow,line width=0] (1.68,0.97) -- (1.25,0.07) -- (2.19,-0.24) -- (2.31,0.75) -- (2.31,1.75) -- cycle; \filldraw[shift={+(-0.43,-0.63)},fill=Snow,line width=0] (1.68,0.97) -- (1.89,1.95) -- (1.11,1.33) -- (0.41,0.62) -- (1.25,0.07) -- cycle; \filldraw[shift={+(-0.00,-0.76)},fill=Snow,line width=0] (2.19,-0.24) -- (3.19,-0.24) -- (3.08,0.75) -- (2.69,1.67) -- (2.31,0.75) -- cycle; \filldraw[shift={+(-0.36,-0.21)},fill=MintCream,line width=0] (2.38,2.83) -- (1.41,2.55) -- (0.63,1.93) -- (1.59,2.20) -- cycle; \filldraw[shift={+(-0.29,-0.30)},fill=MintCream,line width=0] (2.38,2.83) -- (1.59,2.20) -- (1.11,1.33) -- (1.89,1.95) -- cycle; \filldraw[shift={+(-0.60,-0.48)},fill=Snow,line width=0] (1.59,2.20) -- (0.63,1.93) -- (-0.22,1.40) -- (0.41,0.62) -- (1.11,1.33) -- cycle; \filldraw[shift={+(-0.71,-0.28)},fill=Snow,line width=0] (1.41,2.55) -- (0.41,2.56) -- (-0.56,2.34) -- (-0.22,1.40) -- (0.63,1.93) -- cycle; \filldraw[shift={+(-0.76,-0.06)},fill=Snow,line width=0] (0.41,2.56) -- (1.31,3.00) -- (0.34,3.22) -- (-0.66,3.33) -- (-0.56,2.34) -- cycle; \filldraw[shift={+(-0.39,0.15)},fill=MintCream,line width=0] (2.30,3.17) -- (1.48,3.75) -- (0.51,3.97) -- (1.32,3.39) -- cycle; \filldraw[shift={+(-0.41,0.04)},fill=MintCream,line width=0] (2.30,3.17) -- (1.32,3.39) -- (0.34,3.22) -- (1.31,3.00) -- cycle; \filldraw[shift={+(-0.74,0.17)},fill=Snow,line width=0] (1.32,3.39) -- (0.51,3.97) -- (-0.44,4.31) -- (-0.66,3.33) -- (0.34,3.22) -- cycle; \filldraw[shift={+(-0.66,0.38)},fill=Snow,line width=0] (1.48,3.75) -- (0.87,4.54) -- (0.08,5.16) -- (-0.44,4.31) -- (0.51,3.97) -- cycle; \filldraw[shift={+(-0.52,0.56)},fill=Snow,line width=0] (0.87,4.54) -- (1.77,4.11) -- (1.34,5.01) -- (0.80,5.86) -- (0.08,5.16) -- cycle; \filldraw[shift={+(-0.13,0.40)},fill=MintCream,line width=0] (2.52,3.45) -- (2.46,4.45) -- (2.03,5.35) -- (2.08,4.35) -- cycle; \filldraw[shift={+(-0.23,0.35)},fill=MintCream,line width=0] (2.52,3.45) -- (2.08,4.35) -- (1.34,5.01) -- (1.77,4.11) -- cycle; \filldraw[shift={+(-0.33,0.69)},fill=Snow,line width=0] (2.08,4.35) -- (2.03,5.35) -- (1.70,6.29) -- (0.80,5.86) -- (1.34,5.01) -- cycle; \filldraw[shift={+(-0.11,0.75)},fill=Snow,line width=0] (2.46,4.45) -- (2.69,5.42) -- (2.69,6.42) -- (1.70,6.29) -- (2.03,5.35) -- cycle; \filldraw[shift={+(0.11,0.75)},fill=Snow,line width=0] (2.69,5.42) -- (2.92,4.45) -- (3.36,5.35) -- (3.69,6.29) -- (2.69,6.42) -- cycle; \filldraw[shift={+(0.23,0.35)},fill=MintCream,line width=0] (2.87,3.45) -- (3.62,4.11) -- (4.05,5.01) -- (3.30,4.35) -- cycle; \filldraw[shift={+(0.13,0.40)},fill=MintCream,line width=0] (2.87,3.45) -- (3.30,4.35) -- (3.36,5.35) -- (2.92,4.45) -- cycle; \filldraw[shift={+(0.33,0.69)},fill=Snow,line width=0] (3.30,4.35) -- (4.05,5.01) -- (4.59,5.86) -- (3.69,6.29) -- (3.36,5.35) -- cycle; \filldraw[shift={+(0.52,0.56)},fill=Snow,line width=0] (3.62,4.11) -- (4.52,4.54) -- (5.30,5.16) -- (4.59,5.86) -- (4.05,5.01) -- cycle; \filldraw[shift={+(0.66,0.38)},fill=Snow,line width=0] (4.52,4.54) -- (3.91,3.75) -- (4.88,3.97) -- (5.82,4.31) -- (5.30,5.16) -- cycle; \filldraw[shift={+(0.41,0.04)},fill=MintCream,line width=0] (3.09,3.17) -- (4.08,3.00) -- (5.05,3.22) -- (4.07,3.39) -- cycle; \filldraw[shift={+(0.39,0.15)},fill=MintCream,line width=0] (3.09,3.17) -- (4.07,3.39) -- (4.88,3.97) -- (3.91,3.75) -- cycle; \filldraw[shift={+(0.74,0.17)},fill=Snow,line width=0] (4.07,3.39) -- (5.05,3.22) -- (6.05,3.33) -- (5.82,4.31) -- (4.88,3.97) -- cycle; \filldraw[shift={+(0.76,-0.06)},fill=Snow,line width=0] (4.08,3.00) -- (4.97,2.56) -- (5.95,2.34) -- (6.05,3.33) -- (5.05,3.22) -- cycle; \filldraw[shift={+(0.71,-0.28)},fill=Snow,line width=0] (4.97,2.56) -- (3.97,2.55) -- (4.76,1.93) -- (5.60,1.40) -- (5.95,2.34) -- cycle; \filldraw[shift={+(0.29,-0.30)},fill=MintCream,line width=0] (3.01,2.83) -- (3.49,1.95) -- (4.28,1.33) -- (3.79,2.20) -- cycle; \filldraw[shift={+(0.36,-0.21)},fill=MintCream,line width=0] (3.01,2.83) -- (3.79,2.20) -- (4.76,1.93) -- (3.97,2.55) -- cycle; \filldraw[shift={+(0.60,-0.48)},fill=Snow,line width=0] (3.79,2.20) -- (4.28,1.33) -- (4.98,0.62) -- (5.60,1.40) -- (4.76,1.93) -- cycle; \end{tikzpicture} $ und Graph #1632: Bei diesem Graph überlappen die gelben 6-Ecke die weiter innen liegenden Flächen ein wenig, da habe ich nachträglich im TikZ-Code ein shift "1.4*..." eingefügt statt vorher "1*...". Das ist also noch nicht perfekt und vielleicht reicht auch schon die jetzige Variante, um die eine oder andere Teilfläche besser zu sehen, wenn sie beispielsweise sehr schmal ist. Ist alles nur ein Versuch. 60 Knoten, 6×Grad 2, 54×Grad 3, 0 Überschneidungen, Gesamtfläche=42.18, 0·3+0·4+24·5+3·6+1·12+1*24 Drei-, Vier-, Fünfecke… 87 Kanten, minimal 0.99999999999999689138, maximal 1.00000000000000577316 $ %Eingabe war: % %#1632 % % % % % % % % % %P[1]=[43.29,62]; P[2]=[79.8,79.39]; D=ab(1,2); A(2,1,Bew(1)); M(3,1,2,blauerWinkel); M(4,3,1,gruenerWinkel); N(5,4,2); M(6,1,3,orangerWinkel); M(7,6,1,vierterWinkel); N(8,7,3); M(9,6,7,fuenfterWinkel); M(10,9,6,sechsterWinkel); N(11,10,7); A(10,11,ab(10,11,[1,11],"gespiegelt")); N(21,8,19); N(22,4,15); RA(21,22,"",1*D); A(13,16,ab(2,5,[1,22])); A(33,36,ab(2,5,[1,12],14,15,[17,22])); RA(2,52,"",1*D); A(5,54); % %//einstellbare Abstandshalter: %//R(40,49,"brown",5.8868*D); %//R(2,33,"blue",5.567*D); %//R(7,18,"orange",1.6167*D); %//R(24,14,"orange",1.7377*D); % % %Ende der Eingabe. \begin{tikzpicture}[draw=grey,font=\sffamily\scriptsize] \definecolor{AliceBlue}{rgb}{0.94,0.97,1.00} \definecolor{Ivory}{rgb}{1.00,1.00,0.94} \definecolor{Snow}{rgb}{1.00,0.98,0.98} %Koordinaten als \coordinate (p-1) at (0,0); \foreach \i/\x/\y in { 1/3.68883033198349696846/0.30596685098738207742, 2/4.59164970951664930254/0.73598681744318872333, 3/3.43357311035191914428/1.27284003336701934117, 4/3.42175482347554327234/2.27277019497597265740, 5/4.21328873342261278623/1.66164494643529536688, 6/2.69808536100262852386/0.17023033240775378716, 7/2.39236992639502110691/1.12235326199336271635, 8/2.79131470046223384429/2.03932821652835993831, 9/1.71268106127162678121/0.00000000000000000000, 10/0.78034961487636078648/0.36160485901396743902, 11/1.39281258175608102512/1.15210414060813248760, 12/0.00000000000000000000/3.16399850521778525092, 13/0.19088502926988346053/4.14561090611776972281, 14/0.99998396802637135039/3.15833602429212989549, 15/1.97117136469949616462/3.39665312511218875358, 16/1.18170897224363935507/4.01045205871982801682, 17/0.11603243591054487882/2.17075308045275416902, 18/1.11433705190917131667/2.11254746495188694411, 19/1.90259899719138458885/2.72788729433066290397, 20/0.19733042256986321750/1.17406324034945419577, 21/1.84041713183206123716/1.72982245895150055226, 22/2.45288009871178003252/2.52032174054566349142, 23/0.26988650295119864797/5.14248540531823561395, 24/1.23485185194565794120/4.88010805256079827075, 25/2.10672591734747882697/4.39037790842047659368, 26/0.64770771513041791589/6.06836397814915962101, 27/1.62512807698101968690/5.85705984605554252909, 28/2.21977929520880179481/5.05307605973879248040, 29/0.99298607263613447582/7.00686430091849654644, 30/1.77231078987175427741/7.63348458873690649540, 31/2.15067176596578768510/6.70782645974479585504, 32/4.58942968632654046957/6.90809035595132847618, 33/5.34408844754081879813/6.25197287095147746783, 34/4.08453384998329216415/6.04491007672614966140, 35/3.80532881511315723699/5.08467856896191872096, 36/4.73162548066109955869/5.46147358935731297436, 37/3.67123769833208468683/7.30422603117232061010, 38/3.12167784866611164318/6.46877168075267583447, 39/3.26044680022740696046/5.47844689661235051403, 40/2.76742998377911852970/7.73216482950047279132, 41/2.42718823084477985930/6.03133038935780962930, 42/2.80554920693881415517/5.10567226036570520620, 43/6.16790635139265486231/5.68511833820681733442, 44/5.45819822402977283815/4.98062250858461830205, 45/4.59814244550432871250/4.47042249111598799516, 46/6.78083011019430426103/4.89497628395552197844, 47/6.10912518295130890778/4.15415748646352955831, 48/5.11552919065631339635/4.04116631824528127481, 49/7.42095605241959077603/4.12670629359393625890, 50/7.57396278157923763530/3.13848114676156164649, 51/6.58313883860548187954/3.27363999415950646110, 52/5.53719350000081167451/1.06148173334332418527, 53/5.04210536831768774135/1.93032449349415480278, 54/4.35012300651469718815/2.65223890043832488672, 55/6.33935305208472321681/1.65859148288735669396, 56/5.89060828575206762991/2.55225144880787491175, 57/4.96357738890855770819/2.92723640356942027552, 58/7.16186277997836917564/2.22734252466250604030, 59/5.85901782365050927126/3.37241774620312551036, 60/4.86819388067675529186/3.50757659360106766044} \coordinate (p-\i) at (\x,\y); %Innenflächen als \filldraw[yellow,shift={+(0.1,0.1)}] (p-1) -- (p-2) -- (p-3) -- cycle; %shift funktioniert nicht mit (p-i) Koordinaten \filldraw[shift={+($1*(0.15,-0.74)$)},fill=Snow,line width=0] (1.07,1.53) -- (1.97,1.96) -- (1.59,2.89) -- (0.80,3.50) -- (0.82,2.50) -- cycle; \filldraw[shift={+($1*(0.41,-0.63)$)},fill=Snow,line width=0] (1.97,1.96) -- (2.92,2.29) -- (2.42,3.16) -- (1.73,3.88) -- (1.59,2.89) -- cycle; \filldraw[shift={+($1*(-0.11,-0.82)$)},fill=Snow,line width=0] (1.07,1.53) -- (0.82,2.50) -- (0.17,3.27) -- (-0.23,2.35) -- (0.08,1.40) -- cycle; \filldraw[shift={+($1*(-0.80,-0.70)$)},fill=Snow,line width=0] (-1.84,1.59) -- (-1.23,2.38) -- (-1.50,3.34) -- (-2.50,3.40) -- (-2.42,2.40) -- cycle; \filldraw[shift={+($1*(-0.47,-0.94)$)},fill=Snow,line width=0] (-1.84,1.59) -- (-0.91,1.23) -- (0.08,1.40) -- (-0.23,2.35) -- (-1.23,2.38) -- cycle; \filldraw[shift={+($1.4*(-0.44,-0.57)$)},fill=Ivory,line width=0] (-1.23,2.38) -- (-0.23,2.35) -- (0.17,3.27) -- (-0.78,2.96) -- (-0.72,3.96) -- (-1.50,3.34) -- cycle; \filldraw[shift={+($1*(-0.75,-0.04)$)},fill=Snow,line width=0] (-2.62,4.39) -- (-1.62,4.39) -- (-0.65,4.62) -- (-1.44,5.24) -- (-2.43,5.37) -- cycle; \filldraw[shift={+($1*(-0.71,0.24)$)},fill=Snow,line width=0] (-2.43,5.37) -- (-1.44,5.24) -- (-0.51,5.62) -- (-1.38,6.11) -- (-2.35,6.37) -- cycle; \filldraw[shift={+($1*(-0.76,-0.31)$)},fill=Snow,line width=0] (-2.62,4.39) -- (-2.50,3.40) -- (-1.50,3.34) -- (-0.72,3.96) -- (-1.62,4.39) -- cycle; \filldraw[shift={+($1*(-0.46,-0.30)$)},fill=Snow,line width=0] (-1.62,4.39) -- (-0.72,3.96) -- (-0.78,2.96) -- (-0.17,3.75) -- (-0.65,4.62) -- cycle; \filldraw[shift={+($1*(-0.00,-0.00)$)},fill=AliceBlue,line width=0] (-0.65,4.62) -- (-0.17,3.75) -- (0.80,3.50) -- (1.59,2.89) -- (1.73,3.88) -- (2.25,4.73) -- (1.98,5.70) -- (2.11,6.69) -- (1.19,6.31) -- (0.19,6.33) -- (-0.51,5.62) -- (-1.44,5.24) -- cycle; \filldraw[shift={+($1*(-0.18,-0.52)$)},fill=Snow,line width=0] (-0.78,2.96) -- (0.17,3.27) -- (0.82,2.50) -- (0.80,3.50) -- (-0.17,3.75) -- cycle; \filldraw[shift={+($1*(-0.65,0.51)$)},fill=Snow,line width=0] (-2.35,6.37) -- (-1.38,6.11) -- (-0.40,6.28) -- (-0.99,7.08) -- (-1.97,7.30) -- cycle; \filldraw[shift={+($1*(-0.37,0.41)$)},fill=Snow,line width=0] (-1.38,6.11) -- (-0.51,5.62) -- (0.19,6.33) -- (-0.19,7.26) -- (-0.40,6.28) -- cycle; \filldraw[shift={+($1*(-0.58,0.88)$)},fill=Snow,line width=0] (-1.97,7.30) -- (-0.99,7.08) -- (-0.47,7.93) -- (-0.85,8.86) -- (-1.63,8.23) -- cycle; \filldraw[shift={+($1*(-0.20,1.04)$)},fill=Snow,line width=0] (-0.85,8.86) -- (-0.47,7.93) -- (0.50,7.70) -- (1.05,8.53) -- (0.15,8.96) -- cycle; \filldraw[shift={+($1.4*(-0.27,0.67)$)},fill=Ivory,line width=0] (-0.99,7.08) -- (-0.40,6.28) -- (-0.19,7.26) -- (0.64,6.71) -- (0.50,7.70) -- (-0.47,7.93) -- cycle; \filldraw[shift={+($1*(0.34,0.67)$)},fill=Snow,line width=0] (1.97,8.14) -- (1.47,7.27) -- (1.19,6.31) -- (2.11,6.69) -- (2.73,7.48) -- cycle; \filldraw[shift={+($1*(0.57,0.50)$)},fill=Snow,line width=0] (2.73,7.48) -- (2.11,6.69) -- (1.98,5.70) -- (2.84,6.21) -- (3.55,6.91) -- cycle; \filldraw[shift={+($1*(0.11,0.82)$)},fill=Snow,line width=0] (1.97,8.14) -- (1.05,8.53) -- (0.50,7.70) -- (0.64,6.71) -- (1.47,7.27) -- cycle; \filldraw[shift={+($1*(-0.03,0.55)$)},fill=Snow,line width=0] (1.47,7.27) -- (0.64,6.71) -- (-0.19,7.26) -- (0.19,6.33) -- (1.19,6.31) -- cycle; \filldraw[shift={+($1*(0.77,0.31)$)},fill=Snow,line width=0] (3.55,6.91) -- (2.84,6.21) -- (2.50,5.27) -- (3.49,5.38) -- (4.16,6.12) -- cycle; \filldraw[shift={+($1*(0.54,0.11)$)},fill=Snow,line width=0] (2.84,6.21) -- (1.98,5.70) -- (2.25,4.73) -- (3.24,4.60) -- (2.50,5.27) -- cycle; \filldraw[shift={+($1*(1.06,0.06)$)},fill=Snow,line width=0] (4.16,6.12) -- (3.49,5.38) -- (3.96,4.50) -- (4.96,4.37) -- (4.80,5.35) -- cycle; \filldraw[shift={+($1*(1.00,-0.34)$)},fill=Snow,line width=0] (4.96,4.37) -- (3.96,4.50) -- (3.27,3.78) -- (3.72,2.89) -- (4.54,3.45) -- cycle; \filldraw[shift={+($1.4*(0.71,-0.10)$)},fill=Ivory,line width=0] (3.49,5.38) -- (2.50,5.27) -- (3.24,4.60) -- (2.35,4.15) -- (3.27,3.78) -- (3.96,4.50) -- cycle; \filldraw[shift={+($1*(0.65,-0.51)$)},fill=Snow,line width=0] (2.92,2.29) -- (3.72,2.89) -- (3.27,3.78) -- (2.35,4.15) -- (2.42,3.16) -- cycle; \filldraw[shift={+($1*(0.49,-0.25)$)},fill=Snow,line width=0] (2.42,3.16) -- (2.35,4.15) -- (3.24,4.60) -- (2.25,4.73) -- (1.73,3.88) -- cycle; \end{tikzpicture} $ nochmal Graph #1632 ein wenig zusammengedrückt 60 Knoten, 6×Grad 2, 54×Grad 3, 0 Überschneidungen, Gesamtfläche=22.84, 0·3+0·4+24·5+3·6+1·12+1*24 Drei-, Vier-, Fünfecke… 87 Kanten, minimal 0.99999999999997501998, maximal 1.00000000000000466294 $ %Eingabe war: % %#1632 zusammengezogen % % % % % % % % %P[1]=[64.67080359521894,132.18348988321037]; P[2]=[114.25796869456322,152.42673672087557]; D=ab(1,2); A(2,1,Bew(1)); M(3,1,2,blauerWinkel); M(4,3,1,gruenerWinkel); N(5,4,2); M(6,1,3,orangerWinkel); M(7,6,1,vierterWinkel); N(8,7,3); M(9,6,7,fuenfterWinkel); M(10,9,6,sechsterWinkel); N(11,10,7); A(10,11,ab(10,11,[1,11],"gespiegelt")); N(21,8,19); N(22,4,15); RA(21,22,"",1*D); A(13,16,ab(2,5,[1,22])); A(33,36,ab(2,5,[1,12],14,15,[17,22])); RA(2,52,"",1*D); A(5,54); % %//einstellbare Abstandshalter: %R(40,49,"brown",5.5*D); %R(2,33,"blue",3.7*D); %R(7,18,"orange",0.1*D); %R(24,14,"orange",0.1*D); % % %Ende der Eingabe. \begin{tikzpicture}[draw=grey,font=\sffamily\scriptsize] \definecolor{AliceBlue}{rgb}{0.94,0.97,1.00} \definecolor{Ivory}{rgb}{1.00,1.00,0.94} \definecolor{Snow}{rgb}{1.00,0.98,0.98} %Koordinaten als \coordinate (p-1) at (0,0); \foreach \i/\x/\y in { 1/3.93661990618804402686/2.44926734915978272511, 2/4.86244411240657914419/2.82722176331553587403, 3/4.08376748871425299114/3.43838189710490960138, 4/3.21480092872907041723/3.93325270613239563744, 5/4.10799378263090986252/3.48357890687488280790, 6/3.73417298340568404313/1.46997411245488596165, 7/2.85818987816565694970/1.95231589929699578256, 8/3.26340579066083913418/2.86653691429320378603, 9/3.21546936613930256499/0.61501998653071066059, 10/2.42695784677654469164/0.00000000000000000000, 11/2.61815464216649651519/0.98155172325894923802, 12/1.94697662078636235528/2.83683064421965802637, 13/1.23070273634845950284/3.53464990625835895344, 14/2.18184070780647498822/3.80885886429776165940, 15/3.17301936988908295234/3.94139135024793896278, 16/2.17634986151407927579/3.85984448595795814896, 17/1.76705512693052657625/1.85314967152135201545, 18/2.76003470583975651920/1.97143557883599185310, 19/2.72758799502404780668/2.97090904569603964092, 20/1.92693736083717181984/0.86601357589875760379, 21/2.81155986798340462585/1.97444092048997088540, 22/3.00275666337334579126/2.95599264374892189977, 23/1.36629671532638452547/4.52541439536004919120, 24/2.14932124983651817729/3.90342357681431817440, 25/3.01237522203827268186/4.40853528828691398900, 26/0.61942735597683973303/5.19038519176001145183, 27/1.47513914930890144284/5.70783792076279272720, 28/2.06426981672161646841/4.89980013902616740040, 29/0.13836717248937735469/6.06707276430966846448, 30/0.00000000000000000000/7.05745376451983652544, 31/0.75445032977567028087/6.40109662096048470659, 32/2.69675801712348706118/6.05471437745709373246, 33/3.65922416751806478530/6.32611612642832188413, 34/3.42112710539643716245/5.36530200162198323000, 35/3.04031427401468690164/4.44064985759428498824, 36/3.46802737212810763268/5.34456440316937531065, 37/1.93482605247529226844/6.70237144817224894666, 38/1.54077486366484150970/5.78328295374036471799, 39/2.42256763178199774345/5.31164589614598714462, 40/0.99999999972021491601/7.05747741980659082373, 41/1.51761498481241252634/5.73715818356286355595, 42/2.27206531458808358437/5.08080104000351973070, 43/4.44945439475867399182/5.71330605148237680169, 44/3.51928227772232604664/5.34618232208298671537, 45/3.52519486550574789874/4.34619980158289997973, 46/5.39877067689058431910/6.02762849178730597544, 47/5.41904198879854437365/5.02783397594241154849, 48/4.42469540889064205658/4.92165074268283664338, 49/6.39853447764443128420/6.00589504516182071114, 50/7.32541316949656451385/5.63053403148235620534, 51/6.37976604433094340862/5.30533945178275967436, 52/5.10863637836324269159/3.79644277432544674511, 53/4.14940320307017529444/3.51382693008245938771, 54/3.53903737236932114385/4.30594658815998609924, 55/6.05048983686728103493/4.13246667630858688369, 56/5.45156144676850473729/4.93326926342584304308, 57/4.60221538946704900042/4.40543285416017571521, 58/6.82543365571571758466/4.76449680029684241589, 59/5.42319616347728494787/4.97638869194936805940, 60/4.47754903831166650718/4.65119411224976442298} \coordinate (p-\i) at (\x,\y); %Innenflächen als \filldraw[yellow,shift={+(0.1,0.1)}] (p-1) -- (p-2) -- (p-3) -- cycle; %shift funktioniert nicht mit (p-i) Koordinaten \filldraw[shift={+($1*(0.24,-0.30)$)},fill=Snow,line width=0] (1.21,2.47) -- (2.13,2.85) -- (1.38,3.50) -- (0.49,3.95) -- (1.35,3.46) -- cycle; \filldraw[shift={+($1*(0.33,-0.19)$)},fill=Snow,line width=0] (2.13,2.85) -- (2.38,3.82) -- (1.42,3.53) -- (0.81,4.32) -- (1.38,3.50) -- cycle; \filldraw[shift={+($1*(0.10,-0.54)$)},fill=Snow,line width=0] (1.21,2.47) -- (1.35,3.46) -- (0.53,2.89) -- (0.13,1.97) -- (1.00,1.49) -- cycle; \filldraw[shift={+($1*(-0.29,-0.93)$)},fill=Snow,line width=0] (-0.30,0.02) -- (-0.11,1.00) -- (0.03,1.99) -- (-0.96,1.87) -- (-0.80,0.88) -- cycle; \filldraw[shift={+($1*(-0.08,-0.97)$)},fill=Snow,line width=0] (-0.30,0.02) -- (0.49,0.63) -- (1.00,1.49) -- (0.13,1.97) -- (-0.11,1.00) -- cycle; \filldraw[shift={+($1.4*(-0.12,-0.63)$)},fill=Ivory,line width=0] (-0.11,1.00) -- (0.13,1.97) -- (0.53,2.89) -- (0.08,1.99) -- (-0.00,2.99) -- (0.03,1.99) -- cycle; \filldraw[shift={+($1*(-0.33,-0.19)$)},fill=Snow,line width=0] (-0.78,2.86) -- (-0.55,3.83) -- (0.44,3.96) -- (-0.55,3.88) -- (-1.50,3.55) -- cycle; \filldraw[shift={+($1*(-0.38,-0.05)$)},fill=Snow,line width=0] (-1.50,3.55) -- (-0.55,3.88) -- (0.28,4.43) -- (-0.58,3.92) -- (-1.36,4.54) -- cycle; \filldraw[shift={+($1*(-0.29,-0.46)$)},fill=Snow,line width=0] (-0.78,2.86) -- (-0.96,1.87) -- (0.03,1.99) -- (-0.00,2.99) -- (-0.55,3.83) -- cycle; \filldraw[shift={+($1*(-0.14,-0.33)$)},fill=Snow,line width=0] (-0.55,3.83) -- (-0.00,2.99) -- (0.08,1.99) -- (0.27,2.97) -- (0.44,3.96) -- cycle; \filldraw[shift={+($1*(-0.00,0.00)$)},fill=AliceBlue,line width=0] (0.44,3.96) -- (0.27,2.97) -- (0.49,3.95) -- (1.38,3.50) -- (0.81,4.32) -- (1.75,4.67) -- (0.80,4.36) -- (0.74,5.36) -- (0.31,4.46) -- (-0.46,5.10) -- (0.28,4.43) -- (-0.55,3.88) -- cycle; \filldraw[shift={+($1*(0.01,-0.36)$)},fill=Snow,line width=0] (0.08,1.99) -- (0.53,2.89) -- (1.35,3.46) -- (0.49,3.95) -- (0.27,2.97) -- cycle; \filldraw[shift={+($1*(-0.51,0.18)$)},fill=Snow,line width=0] (-1.36,4.54) -- (-0.58,3.92) -- (-0.66,4.92) -- (-1.25,5.73) -- (-2.11,5.21) -- cycle; \filldraw[shift={+($1*(-0.31,0.17)$)},fill=Snow,line width=0] (-0.58,3.92) -- (0.28,4.43) -- (-0.46,5.10) -- (-1.21,5.76) -- (-0.66,4.92) -- cycle; \filldraw[shift={+($1*(-0.80,0.56)$)},fill=Snow,line width=0] (-2.11,5.21) -- (-1.25,5.73) -- (-1.97,6.42) -- (-2.73,7.08) -- (-2.59,6.09) -- cycle; \filldraw[shift={+($1*(-0.66,0.71)$)},fill=Snow,line width=0] (-2.73,7.08) -- (-1.97,6.42) -- (-1.19,5.80) -- (-0.79,6.72) -- (-1.73,7.08) -- cycle; \filldraw[shift={+($1.4*(-0.49,0.42)$)},fill=Ivory,line width=0] (-1.25,5.73) -- (-0.66,4.92) -- (-1.21,5.76) -- (-0.31,5.33) -- (-1.19,5.80) -- (-1.97,6.42) -- cycle; \filldraw[shift={+($1*(0.00,0.38)$)},fill=Snow,line width=0] (-0.03,6.07) -- (0.69,5.38) -- (0.31,4.46) -- (0.74,5.36) -- (0.93,6.34) -- cycle; \filldraw[shift={+($1*(0.14,0.36)$)},fill=Snow,line width=0] (0.93,6.34) -- (0.74,5.36) -- (0.80,4.36) -- (0.79,5.36) -- (1.72,5.73) -- cycle; \filldraw[shift={+($1*(-0.25,0.48)$)},fill=Snow,line width=0] (-0.03,6.07) -- (-0.79,6.72) -- (-1.19,5.80) -- (-0.31,5.33) -- (0.69,5.38) -- cycle; \filldraw[shift={+($1*(-0.21,0.29)$)},fill=Snow,line width=0] (0.69,5.38) -- (-0.31,5.33) -- (-1.21,5.76) -- (-0.46,5.10) -- (0.31,4.46) -- cycle; \filldraw[shift={+($1*(0.42,0.35)$)},fill=Snow,line width=0] (1.72,5.73) -- (0.79,5.36) -- (1.70,4.94) -- (2.69,5.05) -- (2.67,6.05) -- cycle; \filldraw[shift={+($1*(0.31,0.19)$)},fill=Snow,line width=0] (0.79,5.36) -- (0.80,4.36) -- (1.75,4.67) -- (2.69,5.00) -- (1.70,4.94) -- cycle; \filldraw[shift={+($1*(0.88,0.41)$)},fill=Snow,line width=0] (2.67,6.05) -- (2.69,5.05) -- (3.65,5.32) -- (4.60,5.65) -- (3.67,6.02) -- cycle; \filldraw[shift={+($1*(0.95,0.22)$)},fill=Snow,line width=0] (4.60,5.65) -- (3.65,5.32) -- (2.72,4.95) -- (3.32,4.15) -- (4.10,4.78) -- cycle; \filldraw[shift={+($1.4*(0.61,0.21)$)},fill=Ivory,line width=0] (2.69,5.05) -- (1.70,4.94) -- (2.69,5.00) -- (1.87,4.42) -- (2.72,4.95) -- (3.65,5.32) -- cycle; \filldraw[shift={+($1*(0.55,-0.02)$)},fill=Snow,line width=0] (2.38,3.82) -- (3.32,4.15) -- (2.72,4.95) -- (1.87,4.42) -- (1.42,3.53) -- cycle; \filldraw[shift={+($1*(0.36,0.04)$)},fill=Snow,line width=0] (1.42,3.53) -- (1.87,4.42) -- (2.69,5.00) -- (1.75,4.67) -- (0.81,4.32) -- cycle; \end{tikzpicture} $ und nochmal Graph #1632 fast ganz zusammengedrückt 60 Knoten, 6×Grad 2, 54×Grad 3, 0? Überschneidungen, Gesamtfläche=20.82, 0·3+0·4+24·5+3·6+1·12+1*24 Drei-, Vier-, Fünfecke… 87 Kanten, minimal 0.99999999999999722444, maximal 1.00000000000022515323 $ %Eingabe war: % %#1632 ganz zusammengezogen % % % % % % % % %P[1]=[64.67080359521894,132.18348988321037]; P[2]=[114.25796869456322,152.42673672087557]; D=ab(1,2); A(2,1,Bew(1)); M(3,1,2,blauerWinkel); M(4,3,1,gruenerWinkel); N(5,4,2); M(6,1,3,orangerWinkel); M(7,6,1,vierterWinkel); N(8,7,3); M(9,6,7,fuenfterWinkel); M(10,9,6,sechsterWinkel); N(11,10,7); A(10,11,ab(10,11,[1,11],"gespiegelt")); N(21,8,19); N(22,4,15); RA(21,22,"",1*D); A(13,16,ab(2,5,[1,22])); A(33,36,ab(2,5,[1,12],14,15,[17,22])); RA(2,52,"",1*D); A(5,54); % %//einstellbare Abstandshalter: %R(16,19,"blue",1.001*D); //1.04597786629985844975*D); %R(6,21,"blue",1.001*D); //1.05152352382544100884*D); %R(45,53,"blue",1.001*D); //1.04042330130338411820*D); %R(40,49,"brown",5.2*D); %R(2,33,"blue",3.7*D); %R(7,18,"orange",0.1*D); %R(24,14,"orange",0.1*D); % % %Ende der Eingabe. \usetikzlibrary{spy} \tikzset{SpyStyle/.style={spy using outlines={rectangle, magnification=3, width=2cm, height=2cm, connect spies, blue!70!black}}} \begin{tikzpicture}[SpyStyle,draw=grey,font=\sffamily\tiny] \definecolor{AliceBlue}{rgb}{0.94,0.97,1.00} \definecolor{Ivory}{rgb}{1.00,1.00,0.94} \definecolor{Snow}{rgb}{1.00,0.98,0.98} %Koordinaten als \coordinate (p-1) at (0,0); \foreach \i/\x/\y in { 1/3.95076957479146084751/2.35862421856508364115, 2/4.87659378100999596484/2.73657863272083679007, 3/4.08636482742165885185/3.34938853335652453325, 4/3.29625199889438347256/3.96234996623515867142, 5/4.08707220458530340323/3.35030143689212378533, 6/3.81345933345125809311/1.36809612829045890159, 7/3.02334524633275147920/1.98105593883017827572, 8/3.16046888965591810106/2.97160987801864084901, 9/3.67462035765216699090/0.37778115879890394879, 10/2.74872544133792473531/0.00000000000000000000, 11/2.88546419241971419112/0.99060714410536754304, 12/2.23060369451186613077/2.59606782627837517907, 13/1.44179182312013587364/3.21070254019508594112, 14/2.36848576186939263621/3.58651647992035726986, 15/3.29510896946416353970/3.96250774464173316503, 16/2.36805215062662277603/3.58758688012920368138, 17/2.09443647920206776902/1.60538195806647054908, 18/3.02106045881725027158/1.98137132015285111208, 19/3.15741429701382880779/2.97203151962038836231, 20/1.95979856765737681101/0.61448709342396756750, 21/3.02220300477266246020/1.98121473209078979849, 22/3.15894175585417613661/2.97182187619619408991, 23/1.57738580209801471099/4.20146702929678284022, 24/2.36761524155541103198/3.58865593849077635369, 25/3.29351182823204036154/3.96643300341209714688, 26/0.78821843342817654587/4.81564523163444846432, 27/1.71411424441370785487/5.19342419769720731182, 28/2.50339729790810539001/4.57939466952567197922, 29/0.00000000000000000000/5.43104079645762016781, 30/0.13577937756610414244/6.42177989462007747790, 31/0.92530095399083522878/5.80805709044884110881, 32/2.64310093848368987679/5.57245257648553327101, 33/3.56979615047919018878/5.94826633895920053874, 34/3.43191360000300349498/4.95781887660664111195, 35/3.29421998305541219310/3.96734400673265374948, 36/3.43305739939746512590/4.95765919485382333676, 37/1.85322541709681121169/6.18571977821232277250, 38/1.71552976640877230530/5.19524519106654381062, 39/2.50528974656755609729/4.58182920355106038102, 40/1.06240424760917906433/6.79776706224372695431, 41/1.71482288419139283775/5.19433401127519722706, 42/2.50434446061629412128/4.58061120710418201440, 43/4.36002637771985757098/5.33545626401332917510, 44/3.43420168563232142134/4.95750304002785124879, 45/3.29841792748303630489/3.96676454222792340687, 46/5.28650398772983720619/5.71180615195033603015, 47/5.15072226386288267719/4.72106737534788756250, 48/4.22431556704537758407/4.34454296433091435858, 49/6.21356139695704889903/6.08672555661876479860, 50/7.00367693570519556090/5.47376761725528826474, 51/6.07741660819873352750/5.09688327732110924018, 52/5.01447712161385616980/3.72702710911139112326, 53/4.08778239273707466594/3.35121215534825500626, 54/3.29885280208988440620/3.96569576050079186658, 55/5.94051985831047435482/4.10444577559655243704, 56/5.15159152938332010052/4.71893100065587667302, 57/4.22547771102801750231/4.34168678870377799939, 58/6.86597893934273884042/4.48329335620769775517, 59/5.15115586564528804558/4.71999876850928323790, 60/4.22489553813893170542/4.34311442857485108249} \coordinate (p-\i) at (\x,\y); %Innenflächen als \filldraw[yellow,shift={+(0.1,0.1)}] (p-1) -- (p-2) -- (p-3) -- cycle; %shift funktioniert nicht mit (p-i) Koordinaten \filldraw[shift={+(0.23,-0.24)},fill=Snow,line width=0] (1.21,2.47) -- (2.13,2.85) -- (1.34,3.46) -- (0.55,4.07) -- (1.34,3.46) -- cycle; \filldraw[shift={+(0.29,-0.16)},fill=Snow,line width=0] (2.13,2.85) -- (2.27,3.84) -- (1.34,3.46) -- (0.56,4.08) -- (1.34,3.46) -- cycle; \filldraw[shift={+(0.09,-0.47)},fill=Snow,line width=0] (1.21,2.47) -- (1.34,3.46) -- (0.42,3.08) -- (0.28,2.09) -- (1.07,1.48) -- cycle; \filldraw[shift={+(-0.23,-0.88)},fill=Snow,line width=0] (0.01,0.11) -- (0.14,1.10) -- (0.28,2.09) -- (-0.65,1.71) -- (-0.78,0.72) -- cycle; \filldraw[shift={+(-0.02,-0.91)},fill=Snow,line width=0] (0.01,0.11) -- (0.93,0.49) -- (1.07,1.48) -- (0.28,2.09) -- (0.14,1.10) -- cycle; \filldraw[shift={+(-0.08,-0.55)},fill=Ivory,line width=0] (0.14,1.10) -- (0.28,2.09) -- (0.42,3.08) -- (0.28,2.09) -- (0.41,3.08) -- (0.28,2.09) -- cycle; \filldraw[shift={+(-0.29,-0.17)},fill=Snow,line width=0] (-0.51,2.71) -- (-0.37,3.70) -- (0.55,4.07) -- (-0.38,3.70) -- (-1.30,3.32) -- cycle; \filldraw[shift={+(-0.33,-0.08)},fill=Snow,line width=0] (-1.30,3.32) -- (-0.38,3.70) -- (0.55,4.08) -- (-0.38,3.70) -- (-1.17,4.31) -- cycle; \filldraw[shift={+(-0.22,-0.43)},fill=Snow,line width=0] (-0.51,2.71) -- (-0.65,1.71) -- (0.28,2.09) -- (0.41,3.08) -- (-0.37,3.70) -- cycle; \filldraw[shift={+(-0.09,-0.26)},fill=Snow,line width=0] (-0.37,3.70) -- (0.41,3.08) -- (0.28,2.09) -- (0.42,3.08) -- (0.55,4.07) -- cycle; \filldraw[shift={+(0.00,-0.00)},fill=AliceBlue,line width=0] (0.55,4.07) -- (0.42,3.08) -- (0.55,4.07) -- (1.34,3.46) -- (0.56,4.08) -- (1.48,4.45) -- (0.56,4.08) -- (0.69,5.07) -- (0.55,4.08) -- (-0.24,4.69) -- (0.55,4.08) -- (-0.38,3.70) -- cycle; \filldraw[shift={+(0.01,-0.28)},fill=Snow,line width=0] (0.28,2.09) -- (0.42,3.08) -- (1.34,3.46) -- (0.55,4.07) -- (0.42,3.08) -- cycle; \filldraw[shift={+(-0.45,0.15)},fill=Snow,line width=0] (-1.17,4.31) -- (-0.38,3.70) -- (-0.24,4.69) -- (-1.03,5.30) -- (-1.96,4.92) -- cycle; \filldraw[shift={+(-0.25,0.13)},fill=Snow,line width=0] (-0.38,3.70) -- (0.55,4.08) -- (-0.24,4.69) -- (-1.03,5.30) -- (-0.24,4.69) -- cycle; \filldraw[shift={+(-0.78,0.47)},fill=Snow,line width=0] (-1.96,4.92) -- (-1.03,5.30) -- (-1.82,5.92) -- (-2.61,6.53) -- (-2.74,5.54) -- cycle; \filldraw[shift={+(-0.65,0.63)},fill=Snow,line width=0] (-2.61,6.53) -- (-1.82,5.92) -- (-1.03,5.30) -- (-0.89,6.30) -- (-1.68,6.91) -- cycle; \filldraw[shift={+(-0.43,0.34)},fill=Ivory,line width=0] (-1.03,5.30) -- (-0.24,4.69) -- (-1.03,5.30) -- (-0.24,4.69) -- (-1.03,5.30) -- (-1.82,5.92) -- cycle; \filldraw[shift={+(-0.01,0.33)},fill=Snow,line width=0] (-0.10,5.68) -- (0.69,5.07) -- (0.55,4.08) -- (0.69,5.07) -- (0.83,6.06) -- cycle; \filldraw[shift={+(0.10,0.32)},fill=Snow,line width=0] (0.83,6.06) -- (0.69,5.07) -- (0.56,4.08) -- (0.69,5.07) -- (1.62,5.44) -- cycle; \filldraw[shift={+(-0.26,0.40)},fill=Snow,line width=0] (-0.10,5.68) -- (-0.89,6.30) -- (-1.03,5.30) -- (-0.24,4.69) -- (0.69,5.07) -- cycle; \filldraw[shift={+(-0.18,0.21)},fill=Snow,line width=0] (0.69,5.07) -- (-0.24,4.69) -- (-1.03,5.30) -- (-0.24,4.69) -- (0.55,4.08) -- cycle; \filldraw[shift={+(0.36,0.31)},fill=Snow,line width=0] (1.62,5.44) -- (0.69,5.07) -- (1.48,4.45) -- (2.41,4.83) -- (2.54,5.82) -- cycle; \filldraw[shift={+(0.23,0.15)},fill=Snow,line width=0] (0.69,5.07) -- (0.56,4.08) -- (1.48,4.45) -- (2.41,4.83) -- (1.48,4.45) -- cycle; \filldraw[shift={+(0.80,0.44)},fill=Snow,line width=0] (2.54,5.82) -- (2.41,4.83) -- (3.33,5.21) -- (4.26,5.58) -- (3.47,6.20) -- cycle; \filldraw[shift={+(0.87,0.24)},fill=Snow,line width=0] (4.26,5.58) -- (3.33,5.21) -- (2.41,4.83) -- (3.20,4.21) -- (4.12,4.59) -- cycle; \filldraw[shift={+(0.51,0.21)},fill=Ivory,line width=0] (2.41,4.83) -- (1.48,4.45) -- (2.41,4.83) -- (1.48,4.45) -- (2.41,4.83) -- (3.33,5.21) -- cycle; \filldraw[shift={+(0.48,0.03)},fill=Snow,line width=0] (2.27,3.84) -- (3.20,4.21) -- (2.41,4.83) -- (1.48,4.45) -- (1.34,3.46) -- cycle; \filldraw[shift={+(0.27,0.05)},fill=Snow,line width=0] (1.34,3.46) -- (1.48,4.45) -- (2.41,4.83) -- (1.48,4.45) -- (0.56,4.08) -- cycle; \end{tikzpicture} $ Ganz zusammendrücken auf Punktabstand 0 zählt als Überschneidung und da funktioniert Button "Flächen" nicht richtig. Das ursprünglich gelbe Sechseck wird auf eine Linie zusammengedrückt, wo man die Anzahl der Ecken nicht mehr erkennen kann, die Darstellung mit den getrennten Teilflächen kann auch nicht alles wiedergeben.


   Profil
Slash
Aktiv Letzter Besuch: in der letzten Woche
Dabei seit: 23.03.2005
Mitteilungen: 9140
Wohnort: Cuxhaven
  Beitrag No.1728, vom Themenstarter, eingetragen 2019-03-16

Das ist ja super, Danke Stefan! :-)


   Profil
Slash
Aktiv Letzter Besuch: in der letzten Woche
Dabei seit: 23.03.2005
Mitteilungen: 9140
Wohnort: Cuxhaven
  Beitrag No.1729, vom Themenstarter, eingetragen 2019-03-16

Hier gibt es Überlagerungen der Flächen. Ist das in Ordnung oder sollte das nicht sein? Oder müssen die Flächen nur weiter auseinandergedrückt werden? https://www.matheplanet.de/matheplanet/nuke/html/uploads/b/8038__berlagerung.jpg


   Profil
StefanVogel
Senior Letzter Besuch: in der letzten Woche
Dabei seit: 26.11.2005
Mitteilungen: 4288
Wohnort: Raun
  Beitrag No.1730, eingetragen 2019-03-17

In TikZ lässt sich das noch passend zurechtrücken 54 Knoten, 54×Grad 3, 0 Überschneidungen, Gesamtfläche=13.84, 0·3+0·4+24·5+2·6+2·8+1*14 Drei-, Vier-, Fünfecke… 81 Kanten, minimal 0.99999999999999866773, maximal 1.00000000000000133227 $ %Eingabe war: % %#1701-3 auf minimale Fläche bringen % % % % % % % % % % % % % % % %P[1]=[178.0663930604487,118.22968175109817]; %P[2]=[137.8836806041677,190.2984017431386]; D=ab(1,2); %A(2,1,Bew(1)); M(3,1,2,blauerWinkel); M(4,3,1,gruenerWinkel); %M(5,3,4,orangerWinkel); %M(6,5,3,dreizehnterWinkel); N(7,2,4); N(8,4,6); %M(9,8,4,vierterWinkel); N(10,9,7); %M(11,5,6,fuenfterWinkel); M(12,11,5,sechsterWinkel); N(13,6,12); N(14,13,9); %M(15,14,9,siebenterWinkel); M(16,11,12,achterWinkel); N(17,12,15); N(18,17,16); %M(19,1,2,neunterWinkel); M(20,19,1,zehnterWinkel); %N(21,20,2); N(22,10,21); N(23,15,22); N(24,18,23); %M(25,19,20,elfterWinkel); M(26,25,19,zwölfterWinkel); %A(16,26,ab(26,16,[1,26])); %N(51,24,50); N(52,45,51); N(53,49,25); N(54,20,53); %RA(52,54); % %//RW(16,11,5,11,180); %RW(21,1,19,1,0.88358631315956026597); %RW(16,18,17,18,178); %R(50,18,"brown",1.02*D); %R(23,20,"brown",1.02*D); %RW(2,22,10,22,2); %R(50,14,"brown",1.06*D); %RW(13,12,11,12,2); %R(15,24,"brown",1.12*D); %RW(7,3,1,3,2); %R(50,12,"brown",1.04*D); %R(7,23,"darkred",1.02*D); %RW(8,5,3,5,0.2); % % %Ende der Eingabe. \begin{tikzpicture}[draw=grey,font=\sffamily\normalsize,scale=2.4] \definecolor{Honeydew}{rgb}{0.94,1.00,0.94} \definecolor{Ivory}{rgb}{1.00,1.00,0.94} \definecolor{Snow}{rgb}{1.00,0.98,0.98} %Innenflächen als \filldraw[yellow,shift={+(0.1,0.1)}] (p-1) -- (p-2) -- (p-3) -- cycle; %shift funktioniert nicht mit (p-i) Koordinaten \filldraw[shift={+($(-0.4,0)+(-0.1,-0.4)+1*(0.50,-0.11)$)},fill=Snow,line width=0] (2.16,1.43) node {} -- (2.89,2.12) -- (2.05,2.67) -- (2.53,1.79) -- (1.67,2.31) -- cycle; \filldraw[shift={+($(-0.4,0)+(-0.05,-0.1)+1*(0.35,-0.31)$)},fill=Snow,line width=0] (2.16,1.43) node {} -- (1.67,2.31) -- (2.11,1.41) -- (1.12,1.30) -- (1.75,0.52) -- cycle; \filldraw[shift={+($(-0.4,0)+(0.09,-0.1)+1*(0.15,-0.52)$)},fill=Snow,line width=0] (1.75,0.52) node {} -- (1.12,1.30) -- (1.09,0.30) -- (0.62,1.18) -- (0.80,0.20) -- cycle; \filldraw[shift={+($(-0.4,0)+(0,-0.15)+1*(0.11,-0.20)$)},fill=Ivory,line width=0] (1.30,1.99) node {} -- (2.04,2.66) -- (1.28,2.01) -- (0.68,1.21) -- (-0.28,1.49) -- (0.68,1.21) -- cycle; \filldraw[shift={+($(-0.4,0)+1*(0.20,-0.36)$)},fill=Snow,line width=0] (1.30,1.99) node {} -- (0.68,1.21) -- (1.09,0.30) -- (1.12,1.30) -- (2.11,1.41) -- cycle; \filldraw[shift={+($(-0.4,0)+(0.30,-0.05)+1*(-0.12,-0.50)$)},fill=Snow,line width=0] (-0.15,0.50) node {} -- (0.80,0.20) -- (0.62,1.18) -- (-0.12,0.51) -- (-0.31,1.49) -- cycle; \filldraw[shift={+($(-0.4,0)+(0.25,0)+1*(-0.06,-0.45)$)},fill=Snow,line width=0] (-0.12,0.51) node {} -- (0.62,1.18) -- (1.09,0.30) -- (0.68,1.21) -- (-0.28,1.49) -- cycle; \filldraw[shift={+($(-0.4,0)+(0.24,0)+1*(-0.26,-0.34)$)},fill=Snow,line width=0] (-0.15,0.50) node {} -- (-0.31,1.49) -- (0.42,2.18) -- (-0.32,1.50) -- (-1.08,0.86) -- cycle; \filldraw[shift={+($(-0.4,0)+(0.33,0)+1*(-0.34,-0.25)$)},fill=Snow,line width=0] (-1.08,0.86) node {} -- (-0.32,1.50) -- (0.32,2.27) -- (-0.34,1.52) -- (-1.28,1.84) -- cycle; \filldraw[shift={+($(-0.4,0)+(0.22,0)+1*(-0.15,-0.32)$)},fill=Snow,line width=0] (-0.31,1.49) node {} -- (-0.12,0.51) -- (-0.28,1.49) -- (0.68,1.21) -- (0.42,2.18) -- cycle; \filldraw[shift={+($(-0.4,0)+(0.12,0)+1*(-0.03,-0.18)$)},fill=Snow,line width=0] (0.68,1.21) node {} -- (1.28,2.01) -- (0.32,2.27) -- (-0.32,1.50) -- (0.42,2.18) -- cycle; \filldraw[shift={+($(-0.4,0)+1*(0.42,0.09)$)},fill=Snow,line width=0] (2.89,2.12) node {} -- (2.45,3.02) -- (1.51,3.34) -- (1.08,2.43) -- (2.05,2.67) -- cycle; \filldraw[shift={+($(-0.4,0)+(-0.05,0)+1*(0.16,-0.06)$)},fill=Honeydew,line width=0] (2.05,2.67) node {} -- (1.08,2.43) -- (0.08,2.43) -- (-0.34,1.52) -- (0.32,2.27) -- (1.28,2.01) -- (2.04,2.66) -- (2.53,1.79) -- cycle; \filldraw[shift={+($(-0.4,0)+(-0.19,-0.21)+1*(0.40,-0.12)$)},fill=Snow,line width=0] (1.30,1.99) node {} -- (2.11,1.41) -- (1.67,2.31) -- (2.53,1.79) -- (2.04,2.66) -- cycle; \filldraw[shift={+($(0.1,0.4)+1*(-0.50,0.11)$)},fill=Snow,line width=0] (-0.99,3.42) node {} -- (-1.72,2.74) -- (-0.89,2.18) -- (-1.36,3.06) -- (-0.50,2.55) -- cycle; \filldraw[shift={+($(0.05,0.1)+1*(-0.35,0.31)$)},fill=Snow,line width=0] (-0.99,3.42) node {} -- (-0.50,2.55) -- (-0.94,3.45) -- (0.05,3.56) -- (-0.58,4.34) -- cycle; \filldraw[shift={+($(-0.09,0.1)+1*(-0.15,0.52)$)},fill=Snow,line width=0] (-0.58,4.34) node {} -- (0.05,3.56) -- (0.08,4.56) -- (0.55,3.68) -- (0.37,4.66) -- cycle; \filldraw[shift={+($(0.19,0.21)+1*(-0.40,0.12)$)},fill=Snow,line width=0] (-0.50,2.55) node {} -- (-1.36,3.06) -- (-0.87,2.19) -- (-0.13,2.87) -- (-0.94,3.45) -- cycle; \filldraw[shift={+($1*(-0.20,0.36)$)},fill=Snow,line width=0] (0.05,3.56) node {} -- (-0.94,3.45) -- (-0.13,2.87) -- (0.49,3.65) -- (0.08,4.56) -- cycle; \filldraw[shift={+($(-0.30,0.05)+1*(0.12,0.50)$)},fill=Snow,line width=0] (0.37,4.66) node {} -- (0.55,3.68) -- (1.28,4.35) -- (1.47,3.37) -- (1.32,4.36) -- cycle; \filldraw[shift={+($(-0.25,0)+1*(0.06,0.45)$)},fill=Snow,line width=0] (0.55,3.68) node {} -- (0.08,4.56) -- (0.49,3.65) -- (1.45,3.37) -- (1.28,4.35) -- cycle; \filldraw[shift={+($(0,0.15)+1*(-0.11,0.20)$)},fill=Ivory,line width=0] (0.49,3.65) node {} -- (-0.13,2.87) -- (-0.87,2.19) -- (-0.12,2.85) -- (0.49,3.65) -- (1.45,3.37) -- cycle; \filldraw[shift={+($(-0.22,0)+1*(0.15,0.32)$)},fill=Snow,line width=0] (1.47,3.37) node {} -- (1.28,4.35) -- (1.45,3.37) -- (0.49,3.65) -- (0.75,2.68) -- cycle; \filldraw[shift={+($(-0.12,0)+1*(0.03,0.18)$)},fill=Snow,line width=0] (0.49,3.65) node {} -- (-0.12,2.85) -- (0.85,2.59) -- (1.49,3.35) -- (0.75,2.68) -- cycle; \filldraw[shift={+($(-0.24,0)+1*(0.26,0.34)$)},fill=Snow,line width=0] (2.25,4.00) node {} -- (1.32,4.36) -- (1.47,3.37) -- (0.75,2.68) -- (1.49,3.35) -- cycle; \filldraw[shift={+($1*(-0.42,-0.09)$)},fill=Snow,line width=0] (-1.72,2.74) node {} -- (-1.28,1.84) -- (-0.34,1.52) -- (0.08,2.43) -- (-0.89,2.18) -- cycle; \filldraw[shift={+($(0.05,0)+1*(-0.16,0.06)$)},fill=Honeydew,line width=0] (-0.89,2.18) node {} -- (0.08,2.43) -- (1.08,2.43) -- (1.51,3.34) -- (0.85,2.59) -- (-0.12,2.85) -- (-0.87,2.19) -- (-1.36,3.06) -- cycle; \filldraw[shift={+($(-0.33,0)+1*(0.34,0.25)$)},fill=Snow,line width=0] (2.45,3.02) node {} -- (2.25,4.00) -- (1.49,3.35) -- (0.85,2.59) -- (1.51,3.34) -- cycle; \end{tikzpicture} $ Ich habe dazu in der TikZ-Ausgabe vom Streichholzprogramm je einen Eckpunkt jeder Fläche neu beschriftet und dann zusätzliche shift-Koordinaten eingefügt und solange probiert bis keine Überlagerungen mehr waren. Das Soll in der jetzigen Programmversion war Zählen der n-Ecke, um schnell zu sehen, dass der Graph keine Drei- oder Vierecke enthält. Zählen der Dreiecke war ja schon länger drin, doch die dafür verwendete Methode (welche drei Kanten bilden ein Dreieck) war nicht so gut auf Vierecke oder mehr übertragbar. Bei der aktuellen Variante verwende ich die Methode wie bei Gesamtfläche bestimmen (am Rand einer Fläche entlangtasten), da ist die Eckenzahl egal und ich kann alle Flächen zählen. Anschließend die Flächen nach Eckenzahl färben und etwas auseinanderliegend zeichen ist nicht mehr viel Aufwand beziehungsweis habe ich nicht viel Aufwand gemacht. Ob das so in Ordnung ist, kommt auf den Anwendungszweck an. Ich habe an einigen Graphen gemerkt, dass es ganz ohne Überlagerungen gar nicht gehen kann, also so, dass die Flächen noch wie in der Ausgangslage ineinandergreifen. Als Alternative sind im Streichholzprogramm die Teilflächen transparent überlagert, so dass man die gesamte Kontur erkennen kann (in der Bildschirmkopie sieht man nur ganz wenig davon). Um schnell mal einen Blick darauf zu werfen, wenn man nicht mehr weiß, wie sehr schmale Teilflächen verlaufen, dafür habe ich das schon verwendet. In der TikZ-Ausgabe die Teilflächen zurechtrücken oder ganz neu anordnen habe ich auch schon gemacht.


   Profil
haribo
Senior Letzter Besuch: in der letzten Woche
Dabei seit: 25.10.2012
Mitteilungen: 4495
  Beitrag No.1731, eingetragen 2019-03-17

mit auseinanderrücken werden aus den trocknen graphen ganz wunderbare irrgärten oder stadtpläne! herzlich haribo


   Profil
StefanVogel
Senior Letzter Besuch: in der letzten Woche
Dabei seit: 26.11.2005
Mitteilungen: 4288
Wohnort: Raun
  Beitrag No.1732, eingetragen 2019-03-17

oder ein Meditationspark "alle Wege sind gleich lang".


   Profil
Slash
Aktiv Letzter Besuch: in der letzten Woche
Dabei seit: 23.03.2005
Mitteilungen: 9140
Wohnort: Cuxhaven
  Beitrag No.1733, vom Themenstarter, eingetragen 2019-03-17

Ich habe sofort an tolle Puzzle gedacht. Vielleicht lassen sich auch immer zwei Kanten der Teile so aneinanderfügen, dass man eine faltbare Graphen-Schlange bekommt. Das 4/11-Puzzle sieht bestimmt als Wandgemälde schick aus.


   Profil
StefanVogel
Senior Letzter Besuch: in der letzten Woche
Dabei seit: 26.11.2005
Mitteilungen: 4288
Wohnort: Raun
  Beitrag No.1734, eingetragen 2019-03-23

\quoteon(2019-03-16 21:40 - Slash in Beitrag No. 1729) Hier gibt es Überlagerungen der Flächen. Ist das in Ordnung oder sollte das nicht sein? Oder müssen die Flächen nur weiter auseinandergedrückt werden? https://www.matheplanet.de/matheplanet/nuke/html/uploads/b/8038__berlagerung.jpg \quoteoff Nach Button "Flächen" und Anklicken einer der Flächen erzeugt jetzt Button ".dxf" nicht mehr den Graph aus Linienelementen LINE sondern aus Polygonelementen LWPOLYLINE. Für den einfachen Graph #1718-4 $ %Eingabe war: % %Feinjustieren(w,b) % % % % %P[1]=[0,0]; P[2]=[50,0]; D=ab(1,2); A(2,1,Bew(1)); L(3,1,2); M(4,1,3,blauerWinkel); M(5,3,2,gruenerWinkel); RA(5,2); RA(4,3); % % % % % % % % % % %Ende der Eingabe. \begin{tikzpicture}[draw=grey,font=\sffamily\scriptsize] \definecolor{WhiteSmoke}{rgb}{0.96,0.96,0.96} %Innenflächen als \filldraw[yellow,shift={+(0.1,0.1)}] (p-1) -- (p-2) -- (p-3) -- cycle; %shift funktioniert nicht mit (p-i) Koordinaten \filldraw[shift={+0.01,-0.05)},fill=WhiteSmoke,line width=0] (0.00,0.00) -- (1.00,0.00) -- (0.50,0.87) -- cycle; \filldraw[shift={+(0.16,0.02)},fill=WhiteSmoke,line width=0] (1.00,0.00) -- (1.48,0.69) -- (0.50,0.87) -- cycle; \filldraw[shift={+(-0.15,0.02)},fill=WhiteSmoke,line width=0] (0.00,0.00) -- (0.50,0.87) -- (-0.64,0.77) -- cycle; \end{tikzpicture} $ sieht das so aus \sourceon DXF 0 SECTION 2 ENTITIES 999 Streichholzgraph 0 LWPOLYLINE 8 0 70 1 90 3 10 0.47393957002299414 20 -2.6432142001405823 10 50.47393957002299 20 -2.6432142001405823 10 25.473939570022996 20 40.65805598908135 0 LWPOLYLINE 8 0 70 1 90 3 10 57.897978335084034 20 0.8186719304469584 10 82.13836598569443 20 35.43753323632237 10 32.897978335084034 20 44.11994211966889 0 LWPOLYLINE 8 0 70 1 90 3 10 -7.739998478409703 20 1.187008015454308 10 17.260001521590297 20 44.48827820467624 10 -39.87937896273667 20 39.489230171403214 0 ENDSEC 0 EOF \sourceoff und in einem zufällig gewählten dxf-Viewer ging das auch anzuschauen. Nur einen passenden dxf-Editor zum Verschieben der Dreiecke habe ich nicht gefunden. Vielleicht funktioniert es mit deinem Programm, oder es muss noch etwas geändert werden.


   Profil
Slash
Aktiv Letzter Besuch: in der letzten Woche
Dabei seit: 23.03.2005
Mitteilungen: 9140
Wohnort: Cuxhaven
  Beitrag No.1735, vom Themenstarter, eingetragen 2019-03-23

Also ich kann die dxf Datei in Inkscape laden, aber mir wird nichts angezeigt. Das Programm gibt es hier. Gruß, Slash


   Profil
StefanVogel
Senior Letzter Besuch: in der letzten Woche
Dabei seit: 26.11.2005
Mitteilungen: 4288
Wohnort: Raun
  Beitrag No.1736, eingetragen 2019-03-23

Ich habe Inkscape jetzt installiert, doch warum LWPOLYLINE nicht geht finde ich auf Anhieb auch nicht. Inkscape versteht aber .svg-Dateien. Versuche mal Graph Button "#1705" auswählen, dann Button "Flächen", dann eine Fläche anklicken, dann Button "SVG" und den darunter angezeigten Dateiinhalt als .svg-Datei in Inkscape laden. Dann muss man sich noch durch paar unsichtbare Ebenen hindurchklicken (muss ich bei Button "Flächen" noch entfernen) und kann dann die Polygone einzeln verschieben.


   Profil
Slash
Aktiv Letzter Besuch: in der letzten Woche
Dabei seit: 23.03.2005
Mitteilungen: 9140
Wohnort: Cuxhaven
  Beitrag No.1737, vom Themenstarter, eingetragen 2019-03-23

Wenn ich eine Inkscape Datei als dxf speichere, dann werden die Kanten in meinem CAD als "AcDb"Polyline angezeigt.


   Profil
StefanVogel
Senior Letzter Besuch: in der letzten Woche
Dabei seit: 26.11.2005
Mitteilungen: 4288
Wohnort: Raun
  Beitrag No.1738, eingetragen 2019-03-24

Nächster Versuch: Streichholzgraph-1554.htm, dann Graph Button "#1705", dann Button "Flächen", dann eine Teilfläche anklicken, dann ganz unten Button ".dxf" und den Dateiinhalt in Inkscape laden. Dann sind in meinem installierten Inkscape die Teilflächen sichtbar und verschiebbar. Nach jeder Zeile LWPOLYLINE folgt jetzt ein Zusatz \sourceon DXF 5 100 100 AcDbEntity 8 Ebene_1 62 7 100 AcDbPolyline \sourceoff und am Dateianfang und -ende sind noch jede Menge Einstellungen dabei. Da habe ich nicht weiter probiert, was man davon weglassen kann. Ich habe in Inkscape ein einzelnes Polygon gezeichnet, als .dxf gespeichert und dann setze ich an der Stelle "LWPOLYLINE...AcDbPolyline..." die Teilflächen des Streichholzgraphen ein.


   Profil
haribo
Senior Letzter Besuch: in der letzten Woche
Dabei seit: 25.10.2012
Mitteilungen: 4495
  Beitrag No.1739, eingetragen 2019-03-24

moin, könnt ihr wieder etwas mehr drauf achten in den beiträgen anzugeben welcher graph gerade zu nem irrgarten explodiert wird? in 1712 hatte ich ja irgendwie eine idee verfolgt um abstrakt neues zu begreifen... daran kann ich evtl weiterarbeiten, aber nur wenn ich die herleitung etwas verfolgen kann thx haribo


   Profil
Slash
Aktiv Letzter Besuch: in der letzten Woche
Dabei seit: 23.03.2005
Mitteilungen: 9140
Wohnort: Cuxhaven
  Beitrag No.1740, vom Themenstarter, eingetragen 2019-04-18

Ich bin zurzeit viel mit Parkettierungen beschäftigt, daher war es hier etwas ruhig. Vielleicht sollten wir mal den Beweis des Harborth-Graphen als kleinsten mit doppelter Spiegelsymmetrie in Angriff nehmen. Also erstmal die möglichen Viertel-Teilgraphen mit weniger als 13 Kanten sammeln und dann die Beweglichkeit disskutieren. Wir hatten ja schon mal die möglichen Symmetrieübergänge besprochen mit halben Kanten etc. Frohe Ostern!


   Profil
haribo
Senior Letzter Besuch: in der letzten Woche
Dabei seit: 25.10.2012
Mitteilungen: 4495
  Beitrag No.1741, eingetragen 2019-04-28

moin slash, wiso 13? ich zähle beim harbort im viertel immer noch 26 auch bleibt mir die suche im "doppelt symetrischen" als ansatz viel zu engstirnig wir waren da schonmal offener/allgemeiner indem wir 360/2n als tortenwinkel betrachteten... aber selbst dass ergäbe ja immer nur mehrfache gespiegelte-symetrien, bei n=2 dann eben auch der engstirnige harbort spezialfall "doppelt symetrisch" was wir jetzt wirklich bräuchten wären echt offenen ansätze und davon diejenigen welche wir mal endlich mit hoher anzahl automatisch generieren können, also nen übergang von freien zufällen im java-takt welche dann an unser "streichholz-zurechtrück-program" übergeben werden... grriiins kann ja nicht sein das unser m/n monster 4/11 wirklich der weisheit kleinste minimalität darstellt, selbst 4/10 oder 4/9 sind viel zu spontan mit primitivsten mitteln generiert worden als dass sie ewig halten könnten aber wem sag ich das lg haribo


   Profil
Slash
Aktiv Letzter Besuch: in der letzten Woche
Dabei seit: 23.03.2005
Mitteilungen: 9140
Wohnort: Cuxhaven
  Beitrag No.1742, vom Themenstarter, eingetragen 2019-04-29

Warum ich die 26 durch 2 geteilt habe, kann ich dir auch nicht sagen. :-D Ich dachte mir, dass <= 26 Kanten im Viertelgraphen eine gute Übung wären, die uns die Schwierigkeiten eines Beweises ausloten lässt. Ansonsten war Stefan ja schon kurz davor mit seinem Program bei den 3ern girth 5 eine Suche zu automatisieren. Eine Strategie hin zu einem automatischen Such-Algorithmus könnte vielleicht sein, dass wir uns von klein nach groß hocharbeiten. Bis 10 Kanten sind z.B. alle möglichen Streichholz-Teilgraphen bekannt. So könnten wir das dann überprüfen. Für die 4-regulären wäre es wohl sinnvoll von außen nach innen zu arbeiten, so wie wir es oft getan haben, also Rahmen zuerst. Ring aus gleichseitigen Dreiecken und dann ... das ist die große Frage. Meine minimalen 4er mit 2-3 leicht falschen Kanten sind hier gute Anschaungsobjekte, da sie einen Eindruck davon vermitteln, was möglich sein könnte. Eine weitere Strategie wäre es bei den 4ern von einer Dreiecksparkettierung auszugehen, also den komplett zusammengefalteten Graphen mit 3er, 4er und 6er Knoten. Und diese dann versuchen so auseinandezuziehen, dass nur 4er Knoten übrigbleiben. Stichwort: Epsilon-Graphen.


   Profil
Slash
Aktiv Letzter Besuch: in der letzten Woche
Dabei seit: 23.03.2005
Mitteilungen: 9140
Wohnort: Cuxhaven
  Beitrag No.1743, vom Themenstarter, eingetragen 2019-05-26

Fast ein 112er. Schon mal dagewesen - keine Ahnung? 56 Knoten, 56×Grad 4, 0 Überschneidungen 112 Kanten, minimal 0.99999999999996680433, maximal 1.10774187247689637204 $ %Eingabe war: % %#1342 % % % % % % % %P[1]=[-207.1527291379532,321.64479416627694]; P[2]=[-228.90368782875277,232.6534738399098]; D=ab(1,2); A(2,1); %N(3,1,2); N(4,3,2); N(5,4,2); N(6,4,5); N(7,6,5); % %M(8,1,3,blue_angle,2,green_angle,3,orange_angle,2,fourth_angle,3,fifth_angle,2,"zumachen",7,3,2); % %N(41,10,8); N(42,30,28); N(43,18,16); N(44,22,20); N(45,38,36); N(46,6,40); %N(47,46,3); N(48,44,26); N(49,47,46); N(50,48,44); N(51,41,49); N(52,42,50); %N(53,51,43); N(54,43,53); N(55,32,45); N(56,45,55); % %RA(41,47); RA(42,48); %RA(12,53); RA(55,52); %RA(56,52); RA(51,54); %RA(49,56); RA(50,54); % % % %Ende der Eingabe. \begin{tikzpicture}[draw=grey,font=\sffamily\scriptsize] \definecolor{Ivory}{rgb}{1.00,1.00,0.94} \definecolor{MintCream}{rgb}{0.96,1.00,0.98} \definecolor{Snow}{rgb}{1.00,0.98,0.98} \definecolor{WhiteSmoke}{rgb}{0.96,0.96,0.96} %Koordinaten als \coordinate (p-1) at (0,0); \foreach \i/\x/\y in { 1/0.71228278661746458056/4.32966207993788199104, 2/0.47485519107830970187/3.35825684169974314486, 3/1.43483060253139016460/3.63834113152244853495, 4/1.19740300699223523040/2.66693589328430924468, 5/0.23742759553915485093/2.38685160346160474276, 6/0.95997541145308040722/1.69553065504617017645, 7/0.00000000000000000000/1.41544636522346567453, 8/1.44280247125905458638/3.64677044113187731611, 9/1.66894413617624759461/4.62086486539909380156, 10/2.39946382081783760043/3.93797322659308735027, 11/2.62560548573503060865/4.91206765086030472389, 12/3.12560548573503371728/4.04604224707586812571, 13/3.62560548573503016456/4.91206765086030916478, 14/4.12560548573503371728/4.04604224707587167842, 15/4.62560548573503016456/4.91206765086031094114, 16/5.12560548573503282910/4.04604224707587523113, 17/5.62560548573503016456/4.91206765086031538203, 18/5.36594415172654315427/3.94636790890066579962, 19/6.33209532769591998402/4.20434446824858643055, 20/6.07243399368743475009/3.23864472628893640405, 21/7.03858516965680980348/3.49662128563685659088, 22/6.07860975820373017342/3.21653699581415208897, 23/6.80115757411765553542/2.52521604739871774470, 24/5.84118216266457412900/2.24513175757601324278, 25/6.56372997857850126735/1.55381080916057867647, 26/5.60375456712541986093/1.27372651933787439660, 27/6.32630238303934433475/0.58240557092243994131, 28/5.59578269839774922190/1.26529720972843873206, 29/5.36964103348056553955/0.29120278546122013719, 30/4.63912134883896865034/0.97409442426721892794, 31/4.41297968392178496799/0.00000000000000000000, 32/3.91297968392178674435/0.86602540378444015090, 33/3.41297968392178407981/0.00000000000000325756, 34/2.91297968392178718844/0.86602540378444337055, 35/2.41297968392178452390/0.00000000000000636000, 36/1.91297968392178718844/0.86602540378444681224, 37/1.41297968392178430186/0.00000000000000961756, 38/1.67264101793026798148/0.96569974195965924135, 39/0.70648984196089226195/0.70772318261173761123, 40/0.96615117596937583055/1.67342292457138741568, 41/2.17332215590064459221/2.96387880232587130891, 42/4.86526301375615233269/1.94818884853443741179, 43/4.86594415172654493063/3.08034250511622742508, 44/5.11245858223434801459/2.95856043646625543886, 45/2.17264101793026931375/1.83172514574409706078, 46/1.92612658742245801413/1.95350721439408703262, 47/1.22007967925497329276/2.66167228234585673263, 48/5.81850549040181608262/2.25039536851446975163, 49/2.18639207225768172904/2.91904430710647266878, 50/4.85219309739910276136/1.99302334375387535381, 51/3.13963454890336368663/3.22125082708644727703, 52/3.89895062075343279417/1.69081682377386366412, 53/4.04346607912523747785/3.64913932304863974920, 54/3.96211262150466980714/2.65245400915403894970, 55/2.99511909053158476013/1.26292832781169583889, 56/3.07647254815213866408/2.25961364170629730452} \coordinate (p-\i) at (\x,\y); %Innenflächen als \filldraw[yellow,shift={+(0.1,0.1)}] (p-1) -- (p-2) -- (p-3) -- cycle; \filldraw[fill=WhiteSmoke,line width=0] (p-1) -- (p-2) -- (p-3) -- cycle; \filldraw[fill=WhiteSmoke,line width=0] (p-2) -- (p-4) -- (p-3) -- cycle; \filldraw[fill=WhiteSmoke,line width=0] (p-2) -- (p-5) -- (p-4) -- cycle; \filldraw[fill=WhiteSmoke,line width=0] (p-4) -- (p-5) -- (p-6) -- cycle; \filldraw[fill=WhiteSmoke,line width=0] (p-5) -- (p-7) -- (p-6) -- cycle; \filldraw[fill=WhiteSmoke,line width=0] (p-39) -- (p-40) -- (p-7) -- cycle; \filldraw[fill=Snow,line width=0] (p-1) -- (p-3) -- (p-47) -- (p-41) -- (p-8) -- cycle; \filldraw[fill=WhiteSmoke,line width=0] (p-1) -- (p-8) -- (p-9) -- cycle; \filldraw[fill=WhiteSmoke,line width=0] (p-10) -- (p-11) -- (p-9) -- cycle; \filldraw[fill=WhiteSmoke,line width=0] (p-10) -- (p-9) -- (p-8) -- cycle; \filldraw[fill=Ivory,line width=0] (p-10) -- (p-41) -- (p-51) -- (p-53) -- (p-12) -- (p-11) -- cycle; \filldraw[fill=WhiteSmoke,line width=0] (p-11) -- (p-12) -- (p-13) -- cycle; \filldraw[fill=WhiteSmoke,line width=0] (p-12) -- (p-14) -- (p-13) -- cycle; \filldraw[fill=Snow,line width=0] (p-12) -- (p-53) -- (p-43) -- (p-16) -- (p-14) -- cycle; \filldraw[fill=WhiteSmoke,line width=0] (p-13) -- (p-14) -- (p-15) -- cycle; \filldraw[fill=WhiteSmoke,line width=0] (p-14) -- (p-16) -- (p-15) -- cycle; \filldraw[fill=WhiteSmoke,line width=0] (p-15) -- (p-16) -- (p-17) -- cycle; \filldraw[fill=MintCream,line width=0] (p-16) -- (p-43) -- (p-18) -- (p-17) -- cycle; \filldraw[fill=WhiteSmoke,line width=0] (p-17) -- (p-18) -- (p-19) -- cycle; \filldraw[fill=WhiteSmoke,line width=0] (p-18) -- (p-20) -- (p-19) -- cycle; \filldraw[fill=Ivory,line width=0] (p-18) -- (p-43) -- (p-54) -- (p-50) -- (p-44) -- (p-20) -- cycle; \filldraw[fill=WhiteSmoke,line width=0] (p-19) -- (p-20) -- (p-21) -- cycle; \filldraw[fill=MintCream,line width=0] (p-20) -- (p-44) -- (p-22) -- (p-21) -- cycle; \filldraw[fill=WhiteSmoke,line width=0] (p-21) -- (p-22) -- (p-23) -- cycle; \filldraw[fill=WhiteSmoke,line width=0] (p-22) -- (p-24) -- (p-23) -- cycle; \filldraw[fill=Snow,line width=0] (p-22) -- (p-44) -- (p-48) -- (p-26) -- (p-24) -- cycle; \filldraw[fill=WhiteSmoke,line width=0] (p-23) -- (p-24) -- (p-25) -- cycle; \filldraw[fill=WhiteSmoke,line width=0] (p-24) -- (p-26) -- (p-25) -- cycle; \filldraw[fill=WhiteSmoke,line width=0] (p-25) -- (p-26) -- (p-27) -- cycle; \filldraw[fill=Snow,line width=0] (p-26) -- (p-48) -- (p-42) -- (p-28) -- (p-27) -- cycle; \filldraw[fill=WhiteSmoke,line width=0] (p-27) -- (p-28) -- (p-29) -- cycle; \filldraw[fill=WhiteSmoke,line width=0] (p-28) -- (p-30) -- (p-29) -- cycle; \filldraw[fill=WhiteSmoke,line width=0] (p-28) -- (p-42) -- (p-30) -- cycle; \filldraw[fill=WhiteSmoke,line width=0] (p-29) -- (p-30) -- (p-31) -- cycle; \filldraw[fill=Ivory,line width=0] (p-30) -- (p-42) -- (p-52) -- (p-55) -- (p-32) -- (p-31) -- cycle; \filldraw[fill=WhiteSmoke,line width=0] (p-31) -- (p-32) -- (p-33) -- cycle; \filldraw[fill=WhiteSmoke,line width=0] (p-32) -- (p-34) -- (p-33) -- cycle; \filldraw[fill=WhiteSmoke,line width=0] (p-33) -- (p-34) -- (p-35) -- cycle; \filldraw[fill=WhiteSmoke,line width=0] (p-34) -- (p-36) -- (p-35) -- cycle; \filldraw[fill=Snow,line width=0] (p-32) -- (p-55) -- (p-45) -- (p-36) -- (p-34) -- cycle; \filldraw[fill=WhiteSmoke,line width=0] (p-35) -- (p-36) -- (p-37) -- cycle; \filldraw[fill=MintCream,line width=0] (p-36) -- (p-45) -- (p-38) -- (p-37) -- cycle; \filldraw[fill=WhiteSmoke,line width=0] (p-38) -- (p-40) -- (p-39) -- cycle; \filldraw[fill=Ivory,line width=0] (p-38) -- (p-45) -- (p-56) -- (p-49) -- (p-46) -- (p-40) -- cycle; \filldraw[fill=WhiteSmoke,line width=0] (p-37) -- (p-38) -- (p-39) -- cycle; \filldraw[fill=MintCream,line width=0] (p-40) -- (p-46) -- (p-6) -- (p-7) -- cycle; \filldraw[fill=WhiteSmoke,line width=0] (p-10) -- (p-8) -- (p-41) -- cycle; \filldraw[fill=WhiteSmoke,line width=0] (p-46) -- (p-49) -- (p-47) -- cycle; \filldraw[fill=Snow,line width=0] (p-3) -- (p-4) -- (p-6) -- (p-46) -- (p-47) -- cycle; \filldraw[fill=WhiteSmoke,line width=0] (p-44) -- (p-50) -- (p-48) -- cycle; \filldraw[fill=MintCream,line width=0] (p-41) -- (p-47) -- (p-49) -- (p-51) -- cycle; \filldraw[fill=Ivory,line width=0] (p-49) -- (p-56) -- (p-52) -- (p-50) -- (p-54) -- (p-51) -- cycle; \filldraw[fill=MintCream,line width=0] (p-42) -- (p-48) -- (p-50) -- (p-52) -- cycle; \filldraw[fill=WhiteSmoke,line width=0] (p-51) -- (p-54) -- (p-53) -- cycle; \filldraw[fill=WhiteSmoke,line width=0] (p-43) -- (p-53) -- (p-54) -- cycle; \filldraw[fill=WhiteSmoke,line width=0] (p-52) -- (p-56) -- (p-55) -- cycle; \filldraw[fill=WhiteSmoke,line width=0] (p-45) -- (p-55) -- (p-56) -- cycle; %gefüllte Winkel als \fill[red!20] (p-1) -- +(0:0.3 cm) arc (0:60:0.3 cm) -- cycle; %Kanten als \draw[gray,thick] (p-1) -- (p-2); \foreach \i/\j in { 2/1, 3/1, 3/2, 4/3, 4/2, 5/4, 5/2, 6/4, 6/5, 7/6, 7/5, 7/39, 8/1, 9/1, 9/8, 10/9, 10/8, 11/9, 11/10, 12/11, 12/53, 13/11, 13/12, 14/13, 14/12, 15/13, 15/14, 16/15, 16/14, 17/15, 17/16, 18/17, 19/17, 19/18, 20/19, 20/18, 21/19, 21/20, 22/21, 23/21, 23/22, 24/23, 24/22, 25/23, 25/24, 26/25, 26/24, 27/25, 27/26, 28/27, 29/27, 29/28, 30/29, 30/28, 31/29, 31/30, 31/33, 32/33, 32/31, 33/35, 34/35, 34/33, 34/32, 35/37, 36/37, 36/35, 36/34, 38/39, 38/37, 38/40, 39/37, 40/7, 40/39, 41/10, 41/8, 41/47, 42/30, 42/28, 42/48, 43/18, 43/16, 44/22, 44/20, 45/38, 45/36, 46/6, 46/40, 47/46, 47/3, 48/44, 48/26, 49/47, 49/46, 49/56, 50/48, 50/44, 50/54, 51/41, 51/49, 51/54, 52/42, 52/50, 53/51, 53/43, 54/43, 54/53, 55/32, 55/45, 55/52, 56/45, 56/55, 56/52} \draw[gray,thick] (p-\i) -- (p-\j); %Punkte als \fill[red] (p-1) circle (1.125pt) %einzustellende Kanten als \draw[green] (p-1) -- (p-2); %nicht passende Kanten als \draw[magenta,ultra thick,dash pattern=on 0.01cm off 0.09cm] (p-1) -- (p-2); %Winkel als \draw[->,red] (p-1) +(0:0.3 cm) arc (0:60:0.3 cm); %Punktnummern als \node[anchor=30] (P1) at (p-1) {1}; \end{tikzpicture} $


   Profil
Slash
Aktiv Letzter Besuch: in der letzten Woche
Dabei seit: 23.03.2005
Mitteilungen: 9140
Wohnort: Cuxhaven
  Beitrag No.1744, vom Themenstarter, eingetragen 2019-05-27

Fast 124er (der erste!). Kaum zu glauben, dass der nicht will. 62 Knoten, 62×Grad 4, 0 Überschneidungen 124 Kanten, minimal 0.99999999999997346567, maximal 1.03320923741677850316 einzustellende Kanten, Abstände und Winkel: |P11-P28|=1.00000000000000066613 |P23-P28|=1.00000000000000066613 |P31-P62|=0.99999999999997346567 |P25-P62|=1.03320923741677850316 nicht passende Kanten: |P25-P62|=1.03320923741677850316 |P56-P32|=1.03320923741677783703 \geo ebene(778.1,462.07) x(7.96,16.44) y(8.51,13.54) form(.) #//Eingabe war: # #Fast 4/4 mit 124 # # # # # #P[1]=[-187.24783670428752,9.012560214022926]; #P[2]=[-131.58334308932436,-63.93667707988624]; D=ab(1,2); A(2,1); L(3,1,2); #L(4,3,2); L(5,4,2); L(6,3,4); M(7,1,3,blauerWinkel,3); N(13,7,6); #M(14,5,4,gruenerWinkel); #L(15,14,5); L(16,14,15); L(17,16,15); N(18,6,14); N(19,16,17); N(20,19,17); #N(21,19,20); N(22,21,20); #M(23,12,11,orange_angle,2); N(27,13,18); N(28,13,27); N(29,27,18); N(30,21,29); #N(31,29,30); N(32,31,30); #RA(11,28); RA(23,28); # #A(22,26,ab(26,22,[1,33])); # #RA(31,62); A(61,32); #RA(25,62); A(56,32); # # # #//Ende der Eingabe, weiter mit fedgeo: p(7.95940186156705387077,10.09821749569419147008,P1) p(8.56602495557316778729,9.30322792229184258872,P2) p(8.95119457488029901526,10.22607371892462779783,P3) p(9.55781766888641293178,9.43108414552227714012,P4) p(9.17264804957928170381,8.50823834888949193100,P5) p(9.94298728819354415975,10.35392994215506234923,P6) p(8.94567358035806847738,10.26334804015226076501,P7) p(8.30953047452111626114,11.03491913143038694045,P8) p(9.29580219331213086775,11.20004967588845623538,P9) p(8.65965908747518042787,11.97162076716658241082,P10) p(9.64593080626619503448,12.13675131162465170576,P11) p(9.00978770042924459460,12.90832240290277610484,P12) p(9.36603243537112106765,11.17070598110616863607,P13) p(9.67264804957928170381,9.37426375267393119373,P14) p(10.17264804957928170381,8.50823834888949193100,P15) p(10.67264804957928170381,9.37426375267393119373,P16) p(11.17264804957928170381,8.50823834888949193100,P17) p(10.63806054645375631651,9.63499102565969600676,P18) p(11.67264804957928170381,9.37426375267393119373,P19) p(12.17264804957928170381,8.50823834888949193100,P20) p(12.67264804957928170381,9.37426375267393119373,P21) p(13.17264804957928170381,8.50823834888949193100,P22) p(9.70004532411852693485,12.18475871328117676740,P23) p(9.98154104874219072485,13.14432119536277454586,P24) p(10.67179867243147306510,12.42075750574117343206,P25) p(10.95329439705513685510,13.38031998782277121052,P26) p(10.06110569363133144805,10.45176706461079874089,P27) p(10.33618842995547559838,11.41318762200304703924,P28) p(11.05693191897662863710,10.54303660451617830063,P29) p(11.81993145238645936956,9.89663756985076581429,P30) p(11.99822967068353030129,10.88061406619205939705,P31) p(12.76122920409336281011,10.23421503152664691072,P32) p(16.16654058506736646450,11.79034084101807167144,P33) p(15.55991749106124899527,12.58533041442042232916,P34) p(15.17474787175412132001,11.66248461778763712005,P35) p(14.56812477774800740349,12.45747419118998777776,P36) p(14.95329439705513863146,13.38031998782276943416,P37) p(14.18295515844087617552,11.53462839455720079229,P38) p(15.18026886627635008153,11.62521029656000237651,P39) p(15.81641197211330052141,10.85363920528187620107,P40) p(14.83014025332228769116,10.68850866082380868249,P41) p(15.46628335915923813104,9.91693756954568250706,P42) p(14.48001164036822352443,9.75180702508761321212,P43) p(15.11615474620517396431,8.98023593380948703668,P44) p(14.75991001126329571491,10.71785235560609628180,P45) p(14.45329439705513863146,12.51429458403833194780,P46) p(13.95329439705513863146,13.38031998782277121052,P47) p(13.45329439705513863146,12.51429458403833194780,P48) p(12.95329439705513507874,13.38031998782277121052,P49) p(13.48788190018066401876,12.25356731105256891112,P50) p(12.45329439705513507874,12.51429458403833372415,P51) p(11.95329439705513685510,13.38031998782277121052,P52) p(11.45329439705513507874,12.51429458403833194780,P53) p(14.42589712251589162406,9.70379962343108815048,P54) p(14.14440139789222783406,8.74423714134949037202,P55) p(13.45414377420294549381,9.46780083097109148582,P56) p(14.06483675300308533451,11.43679127210146440063,P57) p(13.78975401667894296054,10.47537071470921610228,P58) p(13.06901052765779169818,11.34552173219608661725,P59) p(12.30601099424795741299,11.99192076686149910358,P60) p(12.12771277595088825763,11.00794427052020552082,P61) p(11.36471324254105574880,11.65434330518561623080,P62) nolabel() s(P1,P2) s(P1,P3) s(P2,P3) s(P3,P4) s(P2,P4) s(P4,P5) s(P2,P5) s(P3,P6) s(P4,P6) s(P1,P7) s(P1,P8) s(P7,P8) s(P8,P9) s(P7,P9) s(P8,P10) s(P9,P10) s(P10,P11) s(P9,P11) s(P28,P11) s(P10,P12) s(P11,P12) s(P7,P13) s(P6,P13) s(P5,P14) s(P14,P15) s(P5,P15) s(P14,P16) s(P15,P16) s(P16,P17) s(P15,P17) s(P6,P18) s(P14,P18) s(P16,P19) s(P17,P19) s(P19,P20) s(P17,P20) s(P19,P21) s(P20,P21) s(P21,P22) s(P20,P22) s(P55,P22) s(P56,P22) s(P12,P23) s(P28,P23) s(P12,P24) s(P23,P24) s(P24,P25) s(P23,P25) s(P62,P25) s(P24,P26) s(P25,P26) s(P52,P26) s(P53,P26) s(P13,P27) s(P18,P27) s(P13,P28) s(P27,P28) s(P27,P29) s(P18,P29) s(P21,P30) s(P29,P30) s(P29,P31) s(P30,P31) s(P62,P31) s(P31,P32) s(P30,P32) s(P33,P34) s(P33,P35) s(P34,P35) s(P34,P36) s(P35,P36) s(P34,P37) s(P36,P37) s(P35,P38) s(P36,P38) s(P33,P39) s(P33,P40) s(P39,P40) s(P39,P41) s(P40,P41) s(P40,P42) s(P41,P42) s(P41,P43) s(P42,P43) s(P58,P43) s(P42,P44) s(P43,P44) s(P38,P45) s(P39,P45) s(P37,P46) s(P37,P47) s(P46,P47) s(P46,P48) s(P47,P48) s(P47,P49) s(P48,P49) s(P38,P50) s(P46,P50) s(P48,P51) s(P49,P51) s(P49,P52) s(P51,P52) s(P51,P53) s(P52,P53) s(P44,P54) s(P58,P54) s(P44,P55) s(P54,P55) s(P54,P56) s(P55,P56) s(P32,P56) s(P45,P57) s(P50,P57) s(P45,P58) s(P57,P58) s(P50,P59) s(P57,P59) s(P53,P60) s(P59,P60) s(P59,P61) s(P60,P61) s(P32,P61) s(P60,P62) s(P61,P62) pen(2) color(#0000FF) m(P3,P1,MA10) m(P1,P7,MB10) f(P1,MA10,MB10) #blue color(#008000) m(P4,P5,MA11) m(P5,P14,MB11) b(P5,MA11,MB11) #green color(#FFA500) m(P11,P12,MA12) m(P12,P23,MB12) f(P12,MA12,MB12) #orange pen(2) color(#32CD32) s(P11,P28) #LimeGreen color(#32CD32) s(P23,P28) #LimeGreen color(#32CD32) s(P31,P62) #LimeGreen color(red) s(P25,P62) #LimeGreen color(blue) color(orange) color(red) \geooff \geoprint()


   Profil
Slash
Aktiv Letzter Besuch: in der letzten Woche
Dabei seit: 23.03.2005
Mitteilungen: 9140
Wohnort: Cuxhaven
  Beitrag No.1745, vom Themenstarter, eingetragen 2019-05-30

Spinnen auf LSD bauen ähnliche Netze. Vielleicht bringt's jemanden auf neue Ideen. ;-) ...alle Kanten gleich Eins. $ \begin{tikzpicture}[scale=1] %Eingabe war: % % %Fast 4/4 fast mit 102 % % % % % % % % % %P[1]=[458.6491378096223,-27.893604049985413]; %P[2]=[469.6968981803484,41.197582485556396]; D=ab(1,2); A(2,1); N(3,1,2); N(4,3,2); N(5,4,2); %M(6,1,3,blauerWinkel,2,gruenerWinkel,3,orange_angle,2,fourth_angle,2,fifth_angle,3,sechsterWinkel,2,"zumachen",5,2,3); %N(43,18,16); N(44,22,20); N(45,32,30); N(46,36,34); N(47,3,4); N(48,8,6); %N(49,43,14); N(50,10,48); N(51,24,44); N(52,45,28); N(53,38,46); N(54,47,42); %N(55,46,45); N(56,51,43); N(57,48,54); N(58,55,56); N(59,58,56); N(60,59,14); %N(61,60,10); % % %A(43,49); A(14,49); A(50,48); A(50,10); % %RA(43,44); RA(51,52); RA(53,54); RA(47,48); %RA(52,55); RA(59,57); % % % % %Ende der Eingabe, weiter mit tikzpicture: \coordinate (P1) at (6.555044124783637,-0.3986572529496249); \coordinate (P2) at (6.712939454219982,0.588798601730567); \coordinate (P3) at (5.778829934233088,0.23181204082125825); \coordinate (P4) at (5.936725263669433,1.2192678955014502); \coordinate (P5) at (6.870834783656326,1.5762544564107588); \coordinate (P6) at (5.570632073668184,-0.22277970003662004); \coordinate (P7) at (5.910523670447807,-1.1632443205506506); \coordinate (P8) at (4.926111619332354,-0.9873667676376455); \coordinate (P9) at (5.266003216111976,-1.9278313881516753); \coordinate (P10) at (4.766003216111975,-1.0618059843672372); \coordinate (P11) at (4.266003216111976,-1.9278313881516762); \coordinate (P12) at (3.7660032161119754,-1.061805984367238); \coordinate (P13) at (3.2660032161119767,-1.927831388151677); \coordinate (P14) at (2.766003216111976,-1.0618059843672392); \coordinate (P15) at (2.266003216111977,-1.9278313881516778); \coordinate (P16) at (2.609936075755459,-0.9888371453272308); \coordinate (P17) at (1.6247767776404132,-1.160479673091971); \coordinate (P18) at (1.968709637283895,-0.2214854302675242); \coordinate (P19) at (0.9835503391688495,-0.3931279580322648); \coordinate (P20) at (1.7624686435777916,0.23399744813200338); \coordinate (P21) at (0.8299029582764302,0.5949977841407138); \coordinate (P22) at (1.6088212626853726,1.2221231903049818); \coordinate (P23) at (0.676255577384011,1.5831235263136922); \coordinate (P24) at (1.6724064074030764,1.4954678142788977); \coordinate (P25) at (1.2502430658024888,2.4019875950937597); \coordinate (P26) at (2.246393895821554,2.3143318830589656); \coordinate (P27) at (1.8242305542209665,3.220851663873827); \coordinate (P28) at (2.820381384240031,3.133195951839033); \coordinate (P29) at (2.398218042639444,4.039715732653894); \coordinate (P30) at (3.2780231130790787,3.5643810736727626); \coordinate (P31) at (3.2497724678361344,4.56398194454241); \coordinate (P32) at (4.129577538275769,4.0886472855612785); \coordinate (P33) at (4.101326893032824,5.088248156430925); \coordinate (P34) at (4.2965603312478295,4.1074913544648375); \coordinate (P35) at (5.048303917577343,4.766946872610256); \coordinate (P36) at (5.243537355792347,3.7861900706441687); \coordinate (P37) at (5.995280942121861,4.445645588789585); \coordinate (P38) at (5.312884711032984,3.714663110343147); \coordinate (P39) at (6.287132222633349,3.489181877996643); \coordinate (P40) at (5.604735991544473,2.758199399550204); \coordinate (P41) at (6.578983503144838,2.5327181672037007); \coordinate (P42) at (5.896587272055963,1.8017356887572624); \coordinate (P43) at (2.9538689353989414,-0.04984290250278353); \coordinate (P44) at (2.541386947986734,0.8611228542962714); \coordinate (P45) at (4.157828183518713,3.0890464146916314); \coordinate (P46) at (4.491793769462834,3.1267345524987498); \coordinate (P47) at (5.00261574368254,0.8622813345921415); \coordinate (P48) at (4.58622002255273,-0.04690214712361571); \coordinate (P49) at (3.7029466757384903,-0.7123250071122555); \coordinate (P50) at (3.8322706368880897,-0.703834658007276); \coordinate (P51) at (2.6039234333257864,1.8591655327431595); \coordinate (P52) at (3.4645854195025176,2.3683422658627356); \coordinate (P53) at (5.404850016722564,2.7189008984926355); \coordinate (P54) at (4.8981047415148815,1.8568050650409986); \coordinate (P55) at (4.435354903009275,2.128328495649415); \coordinate (P56) at (3.0164054207379953,0.9481997759441048); \coordinate (P57) at (4.481709020385072,0.9476215833252417); \coordinate (P58) at (3.9722673653468674,1.2420159478076458); \coordinate (P59) at (3.7487886619189523,0.26730713533379824); \coordinate (P60) at (3.7100315197310443,-0.7319415243747981); \coordinate (P61) at (4.48641845655538,-0.10168497000306817); \draw (P2) -- (P1) (P3) -- (P1) (P3) -- (P2) (P4) -- (P3) (P4) -- (P2) (P5) -- (P4) (P5) -- (P2) (P5) -- (P41) (P6) -- (P1) (P7) -- (P1) (P7) -- (P6) (P8) -- (P7) (P8) -- (P6) (P9) -- (P7) (P9) -- (P8) (P10) -- (P9) (P11) -- (P9) (P11) -- (P10) (P12) -- (P11) (P12) -- (P10) (P13) -- (P11) (P13) -- (P12) (P14) -- (P13) (P14) -- (P12) (P15) -- (P13) (P15) -- (P14) (P16) -- (P15) (P17) -- (P15) (P17) -- (P16) (P18) -- (P17) (P18) -- (P16) (P19) -- (P17) (P19) -- (P18) (P20) -- (P19) (P21) -- (P19) (P21) -- (P20) (P22) -- (P21) (P22) -- (P20) (P23) -- (P21) (P23) -- (P22) (P24) -- (P23) (P25) -- (P23) (P25) -- (P24) (P26) -- (P25) (P26) -- (P24) (P27) -- (P25) (P27) -- (P26) (P28) -- (P27) (P28) -- (P26) (P29) -- (P27) (P29) -- (P28) (P30) -- (P29) (P31) -- (P29) (P31) -- (P30) (P32) -- (P31) (P32) -- (P30) (P33) -- (P31) (P33) -- (P32) (P33) -- (P35) (P34) -- (P35) (P34) -- (P33) (P35) -- (P37) (P36) -- (P37) (P36) -- (P35) (P36) -- (P34) (P38) -- (P39) (P38) -- (P37) (P38) -- (P40) (P39) -- (P37) (P40) -- (P41) (P40) -- (P39) (P40) -- (P42) (P41) -- (P39) (P42) -- (P5) (P42) -- (P41) (P43) -- (P18) (P43) -- (P16) (P43) -- (P44) (P44) -- (P22) (P44) -- (P20) (P45) -- (P32) (P45) -- (P30) (P46) -- (P36) (P46) -- (P34) (P47) -- (P3) (P47) -- (P4) (P47) -- (P48) (P48) -- (P8) (P48) -- (P6) (P51) -- (P24) (P51) -- (P44) (P51) -- (P52) (P52) -- (P45) (P52) -- (P28) (P52) -- (P55) (P53) -- (P38) (P53) -- (P46) (P53) -- (P54) (P54) -- (P47) (P54) -- (P42) (P55) -- (P46) (P55) -- (P45) (P56) -- (P51) (P56) -- (P43) (P57) -- (P48) (P57) -- (P54) (P58) -- (P55) (P58) -- (P56) (P59) -- (P58) (P59) -- (P56) (P59) -- (P57) (P60) -- (P59) (P60) -- (P14) (P61) -- (P60) (P61) -- (P10) ; \end{tikzpicture} $


   Profil
Slash
Aktiv Letzter Besuch: in der letzten Woche
Dabei seit: 23.03.2005
Mitteilungen: 9140
Wohnort: Cuxhaven
  Beitrag No.1746, vom Themenstarter, eingetragen 2019-06-01

4/4 112 Versuch. 4 Kanten falsch. 56 Knoten, 56×Grad 4, 0 Überschneidungen, Gesamtfläche=30.15, 42·3+3·4+6·5+6·6+1*20 Drei-, Vier-, Fünfecke… 112 Kanten, minimal 0.99999999999999911182, maximal 1.25199722603235819030 einzustellende Kanten, Abstände und Winkel: |P52-P56|=1.01739522391932779577 |P50-P55|=1.01739522391932735168 |P53-P55|=1.25199722603235819030 |P54-P56|=1.25199722603235730212 $ %Eingabe war: % % %Fast 4/4 Versuch % % % % % % % % % % %P[1]=[41.07557536178106,-137.99161914602846]; %P[2]=[134.7022535309281,-153.99555957316858]; D=ab(1,2); A(2,1); N(3,1,2); N(4,3,2); N(5,4,2); %M(6,1,3,blauerWinkel,2,gruenerWinkel,2,orange_angle,2,fourth_angle,2,fifth_angle,2,sechsterWinkel,2,siebenterWinkel,2,"zumachen",5,2,2); % %N(41,8,6); N(42,12,10); N(43,16,14); N(44,28,26); N(45,32,30); N(46,36,34); %N(47,42,41); N(48,45,44); N(49,3,47); N(50,40,38); N(51,24,48); N(52,20,18); %N(53,49,4); N(54,51,22); N(55,51,54); N(56,49,53); % %RA(41,42); RA(44,45); %RA(50,46); RA(43,52); %RA(43,47); RA(46,48); %RA(52,56); RA(50,55); %RA(53,55); RA(54,56); % % % %Ende der Eingabe. \begin{tikzpicture}[draw=grey,font=\sffamily\scriptsize] \definecolor{Ivory}{rgb}{1.00,1.00,0.94} \definecolor{MintCream}{rgb}{0.96,1.00,0.98} \definecolor{Snow}{rgb}{1.00,0.98,0.98} \definecolor{WhiteSmoke}{rgb}{0.96,0.96,0.96} %Koordinaten als \coordinate (p-1) at (0,0); \foreach \i/\x/\y in { 1/1.05893709848149564223/0.33697956198916451109, 2/2.04464049895265054246/0.16848978099458239432, 3/1.69770522933645784391/1.10637885689659976052, 4/2.68340862980761230006/0.93788907590201719966, 5/3.03034389942380544269/0.00000000000000000000, 6/1.53655665647272754448/1.21554632543077123508, 7/0.53688574141600664547/1.18989361427466944221, 8/1.01450529940723832567/2.06846037771627644375, 9/0.01483438435051752900/2.04280766656017442884, 10/0.87712736963856696715/2.54921738953458953958, 11/0.00741719217525868904/3.04278015881195385006, 12/0.86971017746330814280/3.54918988178636940489, 13/0.00000000000000000000/4.04275265106373371538, 14/0.94406023988702769678/3.71297960264338788861, 15/0.75762195735896886717/4.69544627729855790221, 16/1.70168219724599656395/4.36567322887821251953, 17/1.51524391471793751229/5.34813990353338208905, 18/2.15401204557289638331/4.57874060862594411958, 19/2.50094731518909307866/5.51662968452796054208, 20/3.13971544604405172763/4.74723038962052168444, 21/3.48665071566024886707/5.68511946552253810694, 22/3.83358598527644112153/4.74723038962051990808, 23/4.47235411613140332321/5.51662968452795610119, 24/4.81928938574759602176/4.57874060862593879051, 25/5.45805751660255733526/5.34813990353337231909, 26/4.98043795861132565506/4.46957314009176620573, 27/5.98010887366804677612/4.49522585124786822064, 28/5.50248931567681509591/3.61665908780626166319, 29/6.50216023073353710515/3.64231179896236412219, 30/5.63986724544548767568/3.13590207598794856736, 31/6.50957742290879703972/2.64233930671058425688, 32/5.64728443762074761025/2.13592958373616825796, 33/6.51699461508405697430/1.64236681445880461361, 34/5.57293437519702905547/1.97213986287915155060, 35/5.75937265772508588668/0.98967318822398142597, 36/4.81531241783805885603/1.31944623664432825194, 37/5.00175070036611657542/0.33697956198915818282, 38/4.36298256951115703828/1.10637885689659554167, 39/4.01604729989496078701/0.16848978099457909141, 40/3.37727916904000124987/0.93788907590201642250, 41/2.01417621446395944673/2.09411308887237801457, 42/1.73942035492661650764/3.05562711250900465032, 43/1.88812047977405583765/3.38320655422304206184, 44/4.50281840062009486303/3.59100637665015831601, 45/4.77757426015743913439/2.62949235301353212435, 46/4.62887413531000202482/2.30191291129949870964, 47/2.70949385525959840493/2.81281565488865981095, 48/3.80750075982445679301/2.87230381063387651963, 49/2.09449293508536271702/2.02428926459798352866, 50/3.72421443865619750113/1.87577815180403240092, 51/4.42250167999868892821/3.66083020092455546646, 52/2.79278017642785458818/3.80934131371850659420, 53/3.08019633555651717316/1.85579948360340085678, 54/3.43679827952753447207/3.82931998191913791629, 55/3.78373354914372761471/2.89143090601712060561, 56/2.73326106594032536279/2.79368855950541794542} \coordinate (p-\i) at (\x,\y); %Innenflächen als \filldraw[yellow,shift={+(0.1,0.1)}] (p-1) -- (p-2) -- (p-3) -- cycle; \filldraw[fill=WhiteSmoke,line width=0] (p-1) -- (p-2) -- (p-3) -- cycle; \filldraw[fill=WhiteSmoke,line width=0] (p-2) -- (p-4) -- (p-3) -- cycle; \filldraw[fill=WhiteSmoke,line width=0] (p-2) -- (p-5) -- (p-4) -- cycle; \filldraw[fill=WhiteSmoke,line width=0] (p-39) -- (p-40) -- (p-5) -- cycle; \filldraw[fill=Ivory,line width=0] (p-1) -- (p-3) -- (p-49) -- (p-47) -- (p-41) -- (p-6) -- cycle; \filldraw[fill=WhiteSmoke,line width=0] (p-1) -- (p-6) -- (p-7) -- cycle; \filldraw[fill=WhiteSmoke,line width=0] (p-6) -- (p-8) -- (p-7) -- cycle; \filldraw[fill=WhiteSmoke,line width=0] (p-7) -- (p-8) -- (p-9) -- cycle; \filldraw[fill=WhiteSmoke,line width=0] (p-10) -- (p-11) -- (p-9) -- cycle; \filldraw[fill=WhiteSmoke,line width=0] (p-10) -- (p-12) -- (p-11) -- cycle; \filldraw[fill=WhiteSmoke,line width=0] (p-10) -- (p-42) -- (p-12) -- cycle; \filldraw[fill=WhiteSmoke,line width=0] (p-11) -- (p-12) -- (p-13) -- cycle; \filldraw[fill=Ivory,line width=0] (p-12) -- (p-42) -- (p-47) -- (p-43) -- (p-14) -- (p-13) -- cycle; \filldraw[fill=WhiteSmoke,line width=0] (p-13) -- (p-14) -- (p-15) -- cycle; \filldraw[fill=WhiteSmoke,line width=0] (p-14) -- (p-16) -- (p-15) -- cycle; \filldraw[fill=WhiteSmoke,line width=0] (p-14) -- (p-43) -- (p-16) -- cycle; \filldraw[fill=WhiteSmoke,line width=0] (p-15) -- (p-16) -- (p-17) -- cycle; \filldraw[fill=Snow,line width=0] (p-16) -- (p-43) -- (p-52) -- (p-18) -- (p-17) -- cycle; \filldraw[fill=WhiteSmoke,line width=0] (p-17) -- (p-18) -- (p-19) -- cycle; \filldraw[fill=WhiteSmoke,line width=0] (p-18) -- (p-20) -- (p-19) -- cycle; \filldraw[fill=WhiteSmoke,line width=0] (p-18) -- (p-52) -- (p-20) -- cycle; \filldraw[fill=WhiteSmoke,line width=0] (p-19) -- (p-20) -- (p-21) -- cycle; \filldraw[fill=Ivory,line width=0] (p-20) -- (p-52) -- (p-56) -- (p-54) -- (p-22) -- (p-21) -- cycle; \filldraw[fill=WhiteSmoke,line width=0] (p-21) -- (p-22) -- (p-23) -- cycle; \filldraw[fill=WhiteSmoke,line width=0] (p-22) -- (p-24) -- (p-23) -- cycle; \filldraw[fill=MintCream,line width=0] (p-22) -- (p-54) -- (p-51) -- (p-24) -- cycle; \filldraw[fill=WhiteSmoke,line width=0] (p-23) -- (p-24) -- (p-25) -- cycle; \filldraw[fill=Ivory,line width=0] (p-24) -- (p-51) -- (p-48) -- (p-44) -- (p-26) -- (p-25) -- cycle; \filldraw[fill=WhiteSmoke,line width=0] (p-25) -- (p-26) -- (p-27) -- cycle; \filldraw[fill=WhiteSmoke,line width=0] (p-26) -- (p-28) -- (p-27) -- cycle; \filldraw[fill=WhiteSmoke,line width=0] (p-26) -- (p-44) -- (p-28) -- cycle; \filldraw[fill=WhiteSmoke,line width=0] (p-27) -- (p-28) -- (p-29) -- cycle; \filldraw[fill=Snow,line width=0] (p-28) -- (p-44) -- (p-45) -- (p-30) -- (p-29) -- cycle; \filldraw[fill=WhiteSmoke,line width=0] (p-29) -- (p-30) -- (p-31) -- cycle; \filldraw[fill=WhiteSmoke,line width=0] (p-30) -- (p-32) -- (p-31) -- cycle; \filldraw[fill=WhiteSmoke,line width=0] (p-30) -- (p-45) -- (p-32) -- cycle; \filldraw[fill=WhiteSmoke,line width=0] (p-31) -- (p-32) -- (p-33) -- cycle; \filldraw[fill=Ivory,line width=0] (p-32) -- (p-45) -- (p-48) -- (p-46) -- (p-34) -- (p-33) -- cycle; \filldraw[fill=WhiteSmoke,line width=0] (p-33) -- (p-34) -- (p-35) -- cycle; \filldraw[fill=WhiteSmoke,line width=0] (p-34) -- (p-36) -- (p-35) -- cycle; \filldraw[fill=WhiteSmoke,line width=0] (p-35) -- (p-36) -- (p-37) -- cycle; \filldraw[fill=Snow,line width=0] (p-36) -- (p-46) -- (p-50) -- (p-38) -- (p-37) -- cycle; \filldraw[fill=WhiteSmoke,line width=0] (p-34) -- (p-46) -- (p-36) -- cycle; \filldraw[fill=WhiteSmoke,line width=0] (p-38) -- (p-40) -- (p-39) -- cycle; \filldraw[fill=WhiteSmoke,line width=0] (p-38) -- (p-50) -- (p-40) -- cycle; \filldraw[fill=WhiteSmoke,line width=0] (p-37) -- (p-38) -- (p-39) -- cycle; \filldraw[fill=WhiteSmoke,line width=0] (p-41) -- (p-8) -- (p-6) -- cycle; \filldraw[fill=WhiteSmoke,line width=0] (p-41) -- (p-47) -- (p-42) -- cycle; \filldraw[fill=Snow,line width=0] (p-10) -- (p-9) -- (p-8) -- (p-41) -- (p-42) -- cycle; \filldraw[fill=Snow,line width=0] (p-43) -- (p-47) -- (p-49) -- (p-56) -- (p-52) -- cycle; \filldraw[fill=WhiteSmoke,line width=0] (p-44) -- (p-48) -- (p-45) -- cycle; \filldraw[fill=MintCream,line width=0] (p-3) -- (p-4) -- (p-53) -- (p-49) -- cycle; \filldraw[fill=Snow,line width=0] (p-46) -- (p-48) -- (p-51) -- (p-55) -- (p-50) -- cycle; \filldraw[fill=Ivory,line width=0] (p-4) -- (p-5) -- (p-40) -- (p-50) -- (p-55) -- (p-53) -- cycle; \filldraw[fill=WhiteSmoke,line width=0] (p-51) -- (p-54) -- (p-55) -- cycle; \filldraw[fill=WhiteSmoke,line width=0] (p-49) -- (p-53) -- (p-56) -- cycle; \filldraw[fill=MintCream,line width=0] (p-53) -- (p-55) -- (p-54) -- (p-56) -- cycle; %gefüllte Winkel als \fill[red!20] (p-1) -- +(0:0.3 cm) arc (0:60:0.3 cm) -- cycle; %Kanten als \draw[gray,thick] (p-1) -- (p-2); \foreach \i/\j in { 2/1, 3/1, 3/2, 4/3, 4/2, 5/4, 5/2, 5/39, 6/1, 7/1, 7/6, 8/7, 8/6, 9/7, 9/8, 10/9, 11/9, 11/10, 12/11, 12/10, 13/11, 13/12, 14/13, 15/13, 15/14, 16/15, 16/14, 17/15, 17/16, 18/17, 19/17, 19/18, 20/19, 20/18, 21/19, 21/20, 22/21, 23/21, 23/22, 24/23, 24/22, 25/23, 25/24, 26/25, 27/25, 27/26, 28/27, 28/26, 29/27, 29/28, 30/29, 31/29, 31/30, 32/31, 32/30, 33/31, 33/32, 33/35, 34/35, 34/33, 35/37, 36/37, 36/35, 36/34, 38/39, 38/37, 38/40, 39/37, 40/5, 40/39, 41/8, 41/6, 41/42, 42/12, 42/10, 43/16, 43/14, 43/52, 43/47, 44/28, 44/26, 44/45, 45/32, 45/30, 46/36, 46/34, 46/48, 47/42, 47/41, 48/45, 48/44, 49/3, 49/47, 50/40, 50/38, 50/46, 50/55, 51/24, 51/48, 52/20, 52/18, 52/56, 53/49, 53/4, 53/55, 54/51, 54/22, 54/56, 55/51, 55/54, 56/49, 56/53} \draw[gray,thick] (p-\i) -- (p-\j); %Punkte als \fill[red] (p-1) circle (1.125pt) %einzustellende Kanten als \draw[green] (p-1) -- (p-2); %nicht passende Kanten als \draw[magenta,ultra thick,dash pattern=on 0.01cm off 0.09cm] (p-1) -- (p-2); %Winkel als \draw[->,red] (p-1) +(0:0.3 cm) arc (0:60:0.3 cm); %Punktnummern als \node[anchor=30] (P1) at (p-1) {1}; \end{tikzpicture} $ Oder so verzogen. 56 Knoten, 56×Grad 4, 0 Überschneidungen 112 Kanten, minimal 0.91657497647076102698, maximal 1.00348614624642529236 $ %Eingabe war: % % %Fast 4/4 Versuch % % % % % % % % % % %P[1]=[41.07557536178106,-137.99161914602846]; %P[2]=[134.7022535309281,-153.99555957316858]; D=ab(1,2); A(2,1); N(3,1,2); N(4,3,2); N(5,4,2); %M(6,1,3,blauerWinkel,2,gruenerWinkel,2,orange_angle,2,fourth_angle,2,fifth_angle,2,sechsterWinkel,2,siebenterWinkel,2,"zumachen",5,2,2); % %N(41,8,6); N(42,12,10); N(43,16,14); N(44,28,26); N(45,32,30); N(46,36,34); %N(47,42,41); N(48,45,44); N(49,3,47); N(50,40,38); N(51,24,48); N(52,20,18); %N(53,49,4); N(54,51,22); N(55,51,54); N(56,49,53); % %RA(41,42); RA(44,45); %RA(52,56); RA(50,55); %RA(53,55); RA(54,56); % %RA(43,47); RA(46,48); %RA(50,46); RA(43,52); % % % %Ende der Eingabe. \begin{tikzpicture}[draw=grey,font=\sffamily\scriptsize] \definecolor{Ivory}{rgb}{1.00,1.00,0.94} \definecolor{MintCream}{rgb}{0.96,1.00,0.98} \definecolor{Snow}{rgb}{1.00,0.98,0.98} \definecolor{WhiteSmoke}{rgb}{0.96,0.96,0.96} %Koordinaten als \coordinate (p-1) at (0,0); \foreach \i/\x/\y in { 1/1.42514783110278453471/0.33697956198916451109, 2/2.41085123157393921289/0.16848978099458239432, 3/2.06391596195774651434/1.10637885689659976052, 4/3.04961936242890141457/0.93788907590201719966, 5/3.39655463204509366903/0.00000000000000000000, 6/1.81227424348707089052/1.25900621064660511728, 7/0.82021253659135495706/1.13325419391860737761, 8/1.20733894897564120186/2.05528084257604826135, 9/0.21527724207992526839/1.92952882584805029964, 10/1.02245180229623522372/2.51984164913719954626, 11/0.10763862103996263420/2.92371891192848165630, 12/0.91481318125627264504/3.51403173521763134701, 13/0.00000000000000000000/3.91790899800891345706, 14/0.95653126748306571692/3.62627920816014004401, 15/0.73082444025088788564/4.60047448023898919445, 16/1.68735570773395315847/4.30884469039021578141, 17/1.46164888050177532719/5.28303996246906493184, 18/2.09823571857454327372/4.51183493292600257263, 19/2.44782544664878010110/5.44873782118336080771, 20/3.08441228472154760354/4.67753279164029933668, 21/3.43400201279578443092/5.61443567989765845994, 22/3.78093728241197668538/4.67654660399564114925, 23/4.41970541326693844297/5.44594589890307645419, 24/4.76664068288313114152/4.50805682300105914351, 25/5.40540881373809245503/5.27745611790849356026, 26/5.01828240135380543308/4.35542946925105312062, 27/6.01034410824952214369/4.48118148597905019415, 28/5.62321769586523600992/3.55915483732160931041, 29/6.61527940276095005601/3.68490685404960727212, 30/5.80810484254463954557/3.09459403076045758141, 31/6.72291802380091230162/2.69071676796917547136, 32/5.91574346358460179118/2.10040394468002622475, 33/6.83055664484087454724/1.69652668188874344857, 34/5.87402537735780772010/1.98815647173751308685, 35/6.09973220458998977023/1.01396119965866460255, 36/5.14320093710692383127/1.30559098950743424083, 37/5.36890776433910499321/0.33139571742858525694, 38/4.73232092626633971122/1.10260074697165033619, 39/4.38273119819209977521/0.16569785871429262847, 40/3.74614436011933449322/0.93690288825735767997, 41/2.19940065587135702430/2.18103285930404577897, 42/1.82962636251254529007/3.11015447242634923697, 43/1.91306253496613121179/3.33464941831136529871, 44/4.63115598896951929930/3.43340282059361223688, 45/5.00093028232832992330/2.50428120747130877888, 46/4.91749410987474178114/2.27978626158628294718, 47/2.81915642936104315908/2.96582759758036829112, 48/4.01140021547983227634/2.64860808231729061291, 49/2.44153619565939461467/2.03610322723848380377, 50/4.09573408819357531740/1.87380577651471535994, 51/4.38902044918148170893/3.57833245265917510025, 52/2.73482255664731122025/3.74062990338294021342, 53/3.42663208506934813258/1.86409715563747147016, 54/3.40392455977152819102/3.75033852426018743387, 55/3.74751087686486350492/2.81121742306703525927, 56/3.08304576797601370686/2.80321825683062364476} \coordinate (p-\i) at (\x,\y); %Innenflächen als \filldraw[yellow,shift={+(0.1,0.1)}] (p-1) -- (p-2) -- (p-3) -- cycle; \filldraw[fill=WhiteSmoke,line width=0] (p-1) -- (p-2) -- (p-3) -- cycle; \filldraw[fill=WhiteSmoke,line width=0] (p-2) -- (p-4) -- (p-3) -- cycle; \filldraw[fill=WhiteSmoke,line width=0] (p-2) -- (p-5) -- (p-4) -- cycle; \filldraw[fill=WhiteSmoke,line width=0] (p-39) -- (p-40) -- (p-5) -- cycle; \filldraw[fill=Ivory,line width=0] (p-1) -- (p-3) -- (p-49) -- (p-47) -- (p-41) -- (p-6) -- cycle; \filldraw[fill=WhiteSmoke,line width=0] (p-1) -- (p-6) -- (p-7) -- cycle; \filldraw[fill=WhiteSmoke,line width=0] (p-6) -- (p-8) -- (p-7) -- cycle; \filldraw[fill=WhiteSmoke,line width=0] (p-7) -- (p-8) -- (p-9) -- cycle; \filldraw[fill=WhiteSmoke,line width=0] (p-10) -- (p-11) -- (p-9) -- cycle; \filldraw[fill=WhiteSmoke,line width=0] (p-10) -- (p-12) -- (p-11) -- cycle; \filldraw[fill=WhiteSmoke,line width=0] (p-10) -- (p-42) -- (p-12) -- cycle; \filldraw[fill=WhiteSmoke,line width=0] (p-11) -- (p-12) -- (p-13) -- cycle; \filldraw[fill=Ivory,line width=0] (p-12) -- (p-42) -- (p-47) -- (p-43) -- (p-14) -- (p-13) -- cycle; \filldraw[fill=WhiteSmoke,line width=0] (p-13) -- (p-14) -- (p-15) -- cycle; \filldraw[fill=WhiteSmoke,line width=0] (p-14) -- (p-16) -- (p-15) -- cycle; \filldraw[fill=WhiteSmoke,line width=0] (p-14) -- (p-43) -- (p-16) -- cycle; \filldraw[fill=WhiteSmoke,line width=0] (p-15) -- (p-16) -- (p-17) -- cycle; \filldraw[fill=Snow,line width=0] (p-16) -- (p-43) -- (p-52) -- (p-18) -- (p-17) -- cycle; \filldraw[fill=WhiteSmoke,line width=0] (p-17) -- (p-18) -- (p-19) -- cycle; \filldraw[fill=WhiteSmoke,line width=0] (p-18) -- (p-20) -- (p-19) -- cycle; \filldraw[fill=WhiteSmoke,line width=0] (p-18) -- (p-52) -- (p-20) -- cycle; \filldraw[fill=WhiteSmoke,line width=0] (p-19) -- (p-20) -- (p-21) -- cycle; \filldraw[fill=Ivory,line width=0] (p-20) -- (p-52) -- (p-56) -- (p-54) -- (p-22) -- (p-21) -- cycle; \filldraw[fill=WhiteSmoke,line width=0] (p-21) -- (p-22) -- (p-23) -- cycle; \filldraw[fill=WhiteSmoke,line width=0] (p-22) -- (p-24) -- (p-23) -- cycle; \filldraw[fill=MintCream,line width=0] (p-22) -- (p-54) -- (p-51) -- (p-24) -- cycle; \filldraw[fill=WhiteSmoke,line width=0] (p-23) -- (p-24) -- (p-25) -- cycle; \filldraw[fill=Ivory,line width=0] (p-24) -- (p-51) -- (p-48) -- (p-44) -- (p-26) -- (p-25) -- cycle; \filldraw[fill=WhiteSmoke,line width=0] (p-25) -- (p-26) -- (p-27) -- cycle; \filldraw[fill=WhiteSmoke,line width=0] (p-26) -- (p-28) -- (p-27) -- cycle; \filldraw[fill=WhiteSmoke,line width=0] (p-26) -- (p-44) -- (p-28) -- cycle; \filldraw[fill=WhiteSmoke,line width=0] (p-27) -- (p-28) -- (p-29) -- cycle; \filldraw[fill=Snow,line width=0] (p-28) -- (p-44) -- (p-45) -- (p-30) -- (p-29) -- cycle; \filldraw[fill=WhiteSmoke,line width=0] (p-29) -- (p-30) -- (p-31) -- cycle; \filldraw[fill=WhiteSmoke,line width=0] (p-30) -- (p-32) -- (p-31) -- cycle; \filldraw[fill=WhiteSmoke,line width=0] (p-30) -- (p-45) -- (p-32) -- cycle; \filldraw[fill=WhiteSmoke,line width=0] (p-31) -- (p-32) -- (p-33) -- cycle; \filldraw[fill=Ivory,line width=0] (p-32) -- (p-45) -- (p-48) -- (p-46) -- (p-34) -- (p-33) -- cycle; \filldraw[fill=WhiteSmoke,line width=0] (p-33) -- (p-34) -- (p-35) -- cycle; \filldraw[fill=WhiteSmoke,line width=0] (p-34) -- (p-36) -- (p-35) -- cycle; \filldraw[fill=WhiteSmoke,line width=0] (p-35) -- (p-36) -- (p-37) -- cycle; \filldraw[fill=Snow,line width=0] (p-36) -- (p-46) -- (p-50) -- (p-38) -- (p-37) -- cycle; \filldraw[fill=WhiteSmoke,line width=0] (p-34) -- (p-46) -- (p-36) -- cycle; \filldraw[fill=WhiteSmoke,line width=0] (p-38) -- (p-40) -- (p-39) -- cycle; \filldraw[fill=WhiteSmoke,line width=0] (p-38) -- (p-50) -- (p-40) -- cycle; \filldraw[fill=WhiteSmoke,line width=0] (p-37) -- (p-38) -- (p-39) -- cycle; \filldraw[fill=WhiteSmoke,line width=0] (p-41) -- (p-8) -- (p-6) -- cycle; \filldraw[fill=WhiteSmoke,line width=0] (p-41) -- (p-47) -- (p-42) -- cycle; \filldraw[fill=Snow,line width=0] (p-10) -- (p-9) -- (p-8) -- (p-41) -- (p-42) -- cycle; \filldraw[fill=Snow,line width=0] (p-43) -- (p-47) -- (p-49) -- (p-56) -- (p-52) -- cycle; \filldraw[fill=WhiteSmoke,line width=0] (p-44) -- (p-48) -- (p-45) -- cycle; \filldraw[fill=MintCream,line width=0] (p-3) -- (p-4) -- (p-53) -- (p-49) -- cycle; \filldraw[fill=Snow,line width=0] (p-46) -- (p-48) -- (p-51) -- (p-55) -- (p-50) -- cycle; \filldraw[fill=Ivory,line width=0] (p-4) -- (p-5) -- (p-40) -- (p-50) -- (p-55) -- (p-53) -- cycle; \filldraw[fill=WhiteSmoke,line width=0] (p-51) -- (p-54) -- (p-55) -- cycle; \filldraw[fill=WhiteSmoke,line width=0] (p-49) -- (p-53) -- (p-56) -- cycle; \filldraw[fill=MintCream,line width=0] (p-53) -- (p-55) -- (p-54) -- (p-56) -- cycle; %gefüllte Winkel als \fill[red!20] (p-1) -- +(0:0.3 cm) arc (0:60:0.3 cm) -- cycle; %Kanten als \draw[gray,thick] (p-1) -- (p-2); \foreach \i/\j in { 2/1, 3/1, 3/2, 4/3, 4/2, 5/4, 5/2, 5/39, 6/1, 7/1, 7/6, 8/7, 8/6, 9/7, 9/8, 10/9, 11/9, 11/10, 12/11, 12/10, 13/11, 13/12, 14/13, 15/13, 15/14, 16/15, 16/14, 17/15, 17/16, 18/17, 19/17, 19/18, 20/19, 20/18, 21/19, 21/20, 22/21, 23/21, 23/22, 24/23, 24/22, 25/23, 25/24, 26/25, 27/25, 27/26, 28/27, 28/26, 29/27, 29/28, 30/29, 31/29, 31/30, 32/31, 32/30, 33/31, 33/32, 33/35, 34/35, 34/33, 35/37, 36/37, 36/35, 36/34, 38/39, 38/37, 38/40, 39/37, 40/5, 40/39, 41/8, 41/6, 41/42, 42/12, 42/10, 43/16, 43/14, 43/47, 43/52, 44/28, 44/26, 44/45, 45/32, 45/30, 46/36, 46/34, 46/48, 47/42, 47/41, 48/45, 48/44, 49/3, 49/47, 50/40, 50/38, 50/55, 50/46, 51/24, 51/48, 52/20, 52/18, 52/56, 53/49, 53/4, 53/55, 54/51, 54/22, 54/56, 55/51, 55/54, 56/49, 56/53} \draw[gray,thick] (p-\i) -- (p-\j); %Punkte als \fill[red] (p-1) circle (1.125pt) %einzustellende Kanten als \draw[green] (p-1) -- (p-2); %nicht passende Kanten als \draw[magenta,ultra thick,dash pattern=on 0.01cm off 0.09cm] (p-1) -- (p-2); %Winkel als \draw[->,red] (p-1) +(0:0.3 cm) arc (0:60:0.3 cm); %Punktnummern als \node[anchor=30] (P1) at (p-1) {1}; \end{tikzpicture} $


   Profil
haribo
Senior Letzter Besuch: in der letzten Woche
Dabei seit: 25.10.2012
Mitteilungen: 4495
  Beitrag No.1747, eingetragen 2019-06-02

greifst du mit dem oberen aus #1746 endlich deinen eigenen 4/7er an??? der besteht ja sowiso schon zu lange grus haribo


   Profil
Slash
Aktiv Letzter Besuch: in der letzten Woche
Dabei seit: 23.03.2005
Mitteilungen: 9140
Wohnort: Cuxhaven
  Beitrag No.1748, vom Themenstarter, eingetragen 2019-06-02

4/7? Daran habe ich ja gar nicht gedacht. Muss ich mal probieren.


   Profil
Slash
Aktiv Letzter Besuch: in der letzten Woche
Dabei seit: 23.03.2005
Mitteilungen: 9140
Wohnort: Cuxhaven
  Beitrag No.1749, vom Themenstarter, eingetragen 2019-06-02

Doppelpost. Siehe nächsten Beitrag.


   Profil
Slash
Aktiv Letzter Besuch: in der letzten Woche
Dabei seit: 23.03.2005
Mitteilungen: 9140
Wohnort: Cuxhaven
  Beitrag No.1750, vom Themenstarter, eingetragen 2019-06-02

Mal eine neue Idee. (Im Prinzip ist es ein aufgebrochener Harborth-Rahmen.) Alle Kanten 1, aber zwei 2er Knoten. 58 Knoten, 2×Grad 2, 56×Grad 4, 0 Überschneidungen 114 Kanten, minimal 0.99999999999999755751, maximal 1.00000000000000310862 $ %Eingabe war: % %Fast 4/4 Versuch % % % % % % %P[1]=[-53.63501383638862,26.306879228568903]; %P[2]=[18.34041103837481,-34.952802539303974]; D=ab(1,2); A(2,1); N(3,1,2); N(4,3,2); N(5,4,2); %M(6,1,3,blauerWinkel,2,gruenerWinkel,2,orange_angle,3,fourth_angle,1); % %N(22,20,18); N(23,12,10); N(24,3,4); N(25,8,6); N(26,14,23); RA(26,22); N(27,22,26); RA(23,25); RA(25,27); N(28,27,24); %A(5,21,ab(21,5,[1,29])); % %N(55,24,47); N(56,50,20); %RA(55,28); A(54,56); %N(57,28,55); N(58,54,56); % % % %Ende der Eingabe. \begin{tikzpicture}[draw=grey,font=\sffamily\scriptsize] \definecolor{AliceBlue}{rgb}{0.94,0.97,1.00} \definecolor{LightCyan}{rgb}{0.88,1.00,1.00} \definecolor{MintCream}{rgb}{0.96,1.00,0.98} \definecolor{Snow}{rgb}{1.00,0.98,0.98} \definecolor{WhiteSmoke}{rgb}{0.96,0.96,0.96} %Koordinaten als \coordinate (p-1) at (0,0); \foreach \i/\x/\y in { 1/0.00000000000000000000/3.11545792591001324823, 2/1.14227774348450061837/2.14324315707549439836, 3/1.41310155948735949316/3.61859208552789635149, 4/2.55537930297186033357/2.64637731669337705753, 5/2.28455548696900123673/1.17102838824097510440, 6/1.34622395663160254742/3.77703260694848319545, 7/0.10017149803589943391/4.61210941205541669063, 8/1.44639545466750174540/5.27368409309388663786, 9/0.20034299607179875680/6.10876089820081968895, 10/1.69491871721594566935/5.98131124631249910806, 11/1.05800549288264122971/7.33937661464693746893, 12/2.55258121402678783696/7.21192696275861599986, 13/1.91566798969348361936/8.56999233109305436074, 14/2.66566798969348317527/7.27095422541639635483, 15/3.41566798969348450754/8.56999233109305436074, 16/4.16566798969348361936/7.27095422541639457847, 17/4.91566798969348361936/8.56999233109305258438, 18/5.66566798969348273118/7.27095422541639457847, 19/6.41566798969348273118/8.56999233109305258438, 20/5.87022065717414953667/7.17267804738750580640, 21/7.35305399019367644797/7.39896394285207836816, 22/5.12022065717414864849/5.87363994171085046503, 23/3.18949443836009205455/5.85386159442417763898, 24/2.82620311897471898632/4.12172624514577812249, 25/2.69244791326320509484/4.43860728798695358677, 26/4.14309773753262344798/7.01172201252614701872, 27/3.64605121243574226142/5.59646770608892030197, 28/4.32013928515984879652/4.25646573959368446083, 29/9.63760947716267679652/5.45453440518303978024, 30/8.49533173367817617816/6.42674917401755951829, 31/8.22450791767531974585/4.95140024556515712106, 32/7.08223017419081823931/5.92361501439967597094, 33/8.29138552053107602546/4.79295972414457072119, 34/9.53743797912677671036/3.95788291903763767010, 35/8.19121402249517593930/3.29630823799916772288, 36/9.43726648109088017691/2.46123143289223644814, 37/7.94269075994673379171/2.58868108478055392041, 38/8.57960398428003756521/1.23061571644611822407, 39/7.08502826313588940366/1.35806536833443747270, 40/7.72194148746919406534/0.00000000000000000000, 41/6.97194148746919584170/1.29903810567665822795, 42/6.22194148746919584170/0.00000000000000451063, 43/5.47194148746919406534/1.29903810567665978226, 44/4.72194148746919406534/0.00000000000000225532, 45/3.97194148746919450943/1.29903810567665978226, 46/3.22194148746919406534/0.00000000000000180425, 47/3.76738881998852770394/1.39731428370554811025, 48/4.51738881998852903621/2.69635238938220567206, 49/6.44811503880258563015/2.71613073666887716584, 50/6.81140635818795825429/4.44826608594727535007, 51/6.94516156389947258987/4.13138504310610077397, 52/5.49451173963005334855/1.55827031856690778611, 53/5.99155826472693497919/2.97352462500413405877, 54/5.31747019200282888818/4.31352659149936901173, 55/3.68985902715224467485/2.89530932082108005687, 56/5.94775045001043256576/5.67468301027197519204, 57/5.18379519333737537323/3.03004881526898461885, 58/4.45381428382530319965/5.53994351582406885370} \coordinate (p-\i) at (\x,\y); %Innenflächen als \filldraw[yellow,shift={+(0.1,0.1)}] (p-1) -- (p-2) -- (p-3) -- cycle; \filldraw[fill=WhiteSmoke,line width=0] (p-1) -- (p-2) -- (p-3) -- cycle; \filldraw[fill=WhiteSmoke,line width=0] (p-2) -- (p-4) -- (p-3) -- cycle; \filldraw[fill=WhiteSmoke,line width=0] (p-2) -- (p-5) -- (p-4) -- cycle; \filldraw[fill=WhiteSmoke,line width=0] (p-46) -- (p-47) -- (p-5) -- cycle; \filldraw[fill=LightCyan,line width=0] (p-1) -- (p-3) -- (p-24) -- (p-28) -- (p-27) -- (p-25) -- (p-6) -- cycle; \filldraw[fill=WhiteSmoke,line width=0] (p-1) -- (p-6) -- (p-7) -- cycle; \filldraw[fill=WhiteSmoke,line width=0] (p-6) -- (p-8) -- (p-7) -- cycle; \filldraw[fill=WhiteSmoke,line width=0] (p-7) -- (p-8) -- (p-9) -- cycle; \filldraw[fill=WhiteSmoke,line width=0] (p-10) -- (p-11) -- (p-9) -- cycle; \filldraw[fill=WhiteSmoke,line width=0] (p-10) -- (p-12) -- (p-11) -- cycle; \filldraw[fill=WhiteSmoke,line width=0] (p-10) -- (p-23) -- (p-12) -- cycle; \filldraw[fill=WhiteSmoke,line width=0] (p-11) -- (p-12) -- (p-13) -- cycle; \filldraw[fill=Snow,line width=0] (p-12) -- (p-23) -- (p-26) -- (p-14) -- (p-13) -- cycle; \filldraw[fill=WhiteSmoke,line width=0] (p-13) -- (p-14) -- (p-15) -- cycle; \filldraw[fill=WhiteSmoke,line width=0] (p-14) -- (p-16) -- (p-15) -- cycle; \filldraw[fill=Snow,line width=0] (p-14) -- (p-26) -- (p-22) -- (p-18) -- (p-16) -- cycle; \filldraw[fill=WhiteSmoke,line width=0] (p-15) -- (p-16) -- (p-17) -- cycle; \filldraw[fill=WhiteSmoke,line width=0] (p-16) -- (p-18) -- (p-17) -- cycle; \filldraw[fill=WhiteSmoke,line width=0] (p-17) -- (p-18) -- (p-19) -- cycle; \filldraw[fill=MintCream,line width=0] (p-18) -- (p-22) -- (p-20) -- (p-19) -- cycle; \filldraw[fill=WhiteSmoke,line width=0] (p-19) -- (p-20) -- (p-21) -- cycle; \filldraw[fill=Snow,line width=0] (p-20) -- (p-56) -- (p-50) -- (p-32) -- (p-21) -- cycle; \filldraw[fill=WhiteSmoke,line width=0] (p-21) -- (p-32) -- (p-30) -- cycle; \filldraw[fill=Snow,line width=0] (p-10) -- (p-9) -- (p-8) -- (p-25) -- (p-23) -- cycle; \filldraw[fill=WhiteSmoke,line width=0] (p-24) -- (p-3) -- (p-4) -- cycle; \filldraw[fill=WhiteSmoke,line width=0] (p-25) -- (p-8) -- (p-6) -- cycle; \filldraw[fill=MintCream,line width=0] (p-23) -- (p-25) -- (p-27) -- (p-26) -- cycle; \filldraw[fill=WhiteSmoke,line width=0] (p-22) -- (p-26) -- (p-27) -- cycle; \filldraw[fill=WhiteSmoke,line width=0] (p-24) -- (p-55) -- (p-28) -- cycle; \filldraw[fill=WhiteSmoke,line width=0] (p-29) -- (p-30) -- (p-31) -- cycle; \filldraw[fill=WhiteSmoke,line width=0] (p-30) -- (p-32) -- (p-31) -- cycle; \filldraw[fill=LightCyan,line width=0] (p-29) -- (p-31) -- (p-50) -- (p-54) -- (p-53) -- (p-51) -- (p-33) -- cycle; \filldraw[fill=WhiteSmoke,line width=0] (p-29) -- (p-33) -- (p-34) -- cycle; \filldraw[fill=WhiteSmoke,line width=0] (p-33) -- (p-35) -- (p-34) -- cycle; \filldraw[fill=WhiteSmoke,line width=0] (p-33) -- (p-51) -- (p-35) -- cycle; \filldraw[fill=WhiteSmoke,line width=0] (p-34) -- (p-35) -- (p-36) -- cycle; \filldraw[fill=Snow,line width=0] (p-35) -- (p-51) -- (p-49) -- (p-37) -- (p-36) -- cycle; \filldraw[fill=WhiteSmoke,line width=0] (p-36) -- (p-37) -- (p-38) -- cycle; \filldraw[fill=WhiteSmoke,line width=0] (p-37) -- (p-39) -- (p-38) -- cycle; \filldraw[fill=WhiteSmoke,line width=0] (p-37) -- (p-49) -- (p-39) -- cycle; \filldraw[fill=WhiteSmoke,line width=0] (p-38) -- (p-39) -- (p-40) -- cycle; \filldraw[fill=Snow,line width=0] (p-39) -- (p-49) -- (p-52) -- (p-41) -- (p-40) -- cycle; \filldraw[fill=WhiteSmoke,line width=0] (p-40) -- (p-41) -- (p-42) -- cycle; \filldraw[fill=WhiteSmoke,line width=0] (p-41) -- (p-43) -- (p-42) -- cycle; \filldraw[fill=Snow,line width=0] (p-41) -- (p-52) -- (p-48) -- (p-45) -- (p-43) -- cycle; \filldraw[fill=WhiteSmoke,line width=0] (p-42) -- (p-43) -- (p-44) -- cycle; \filldraw[fill=WhiteSmoke,line width=0] (p-43) -- (p-45) -- (p-44) -- cycle; \filldraw[fill=WhiteSmoke,line width=0] (p-44) -- (p-45) -- (p-46) -- cycle; \filldraw[fill=MintCream,line width=0] (p-45) -- (p-48) -- (p-47) -- (p-46) -- cycle; \filldraw[fill=WhiteSmoke,line width=0] (p-31) -- (p-32) -- (p-50) -- cycle; \filldraw[fill=MintCream,line width=0] (p-49) -- (p-51) -- (p-53) -- (p-52) -- cycle; \filldraw[fill=WhiteSmoke,line width=0] (p-48) -- (p-52) -- (p-53) -- cycle; \filldraw[fill=WhiteSmoke,line width=0] (p-50) -- (p-56) -- (p-54) -- cycle; \filldraw[fill=Snow,line width=0] (p-24) -- (p-4) -- (p-5) -- (p-47) -- (p-55) -- cycle; \filldraw[fill=AliceBlue,line width=0] (p-20) -- (p-22) -- (p-27) -- (p-28) -- (p-57) -- (p-55) -- (p-47) -- (p-48) -- (p-53) -- (p-54) -- (p-58) -- (p-56) -- cycle; \filldraw[fill=WhiteSmoke,line width=0] (p-28) -- (p-55) -- (p-57) -- cycle; \filldraw[fill=WhiteSmoke,line width=0] (p-54) -- (p-56) -- (p-58) -- cycle; %gefüllte Winkel als \fill[red!20] (p-1) -- +(0:0.3 cm) arc (0:60:0.3 cm) -- cycle; %Kanten als \draw[gray,thick] (p-1) -- (p-2); \foreach \i/\j in { 2/1, 3/1, 3/2, 4/3, 4/2, 5/4, 5/2, 5/46, 5/47, 6/1, 7/1, 7/6, 8/7, 8/6, 9/7, 9/8, 10/9, 11/9, 11/10, 12/11, 12/10, 13/11, 13/12, 14/13, 15/13, 15/14, 16/15, 16/14, 17/15, 17/16, 18/17, 18/16, 19/17, 19/18, 20/19, 21/19, 21/20, 21/30, 21/32, 22/20, 22/18, 23/12, 23/10, 23/25, 24/3, 24/4, 25/8, 25/6, 25/27, 26/14, 26/23, 26/22, 27/22, 27/26, 28/27, 28/24, 30/29, 31/29, 31/30, 32/30, 32/31, 33/29, 34/29, 34/33, 35/33, 35/34, 36/34, 36/35, 37/36, 38/36, 38/37, 39/37, 39/38, 40/38, 40/39, 41/40, 42/40, 42/41, 43/41, 43/42, 44/42, 44/43, 45/43, 45/44, 46/44, 46/45, 47/46, 48/45, 48/47, 49/37, 49/39, 49/51, 50/31, 50/32, 51/33, 51/35, 51/53, 52/41, 52/48, 52/49, 53/48, 53/52, 54/50, 54/53, 54/56, 55/24, 55/47, 55/28, 56/50, 56/20, 57/28, 57/55, 58/54, 58/56} \draw[gray,thick] (p-\i) -- (p-\j); %Punkte als \fill[red] (p-1) circle (1.125pt) %einzustellende Kanten als \draw[green] (p-1) -- (p-2); %nicht passende Kanten als \draw[magenta,ultra thick,dash pattern=on 0.01cm off 0.09cm] (p-1) -- (p-2); %Winkel als \draw[->,red] (p-1) +(0:0.3 cm) arc (0:60:0.3 cm); %Punktnummern als \node[anchor=30] (P1) at (p-1) {1}; \end{tikzpicture} $


   Profil
Slash
Aktiv Letzter Besuch: in der letzten Woche
Dabei seit: 23.03.2005
Mitteilungen: 9140
Wohnort: Cuxhaven
  Beitrag No.1751, vom Themenstarter, eingetragen 2019-06-02

Fast 4/4 mit 116. Zwei Kanten falsch. 58 Knoten, 58×Grad 4, 0 Überschneidungen 116 Kanten, minimal 0.80337585918818454900, maximal 1.00000000000000310862 $ %Eingabe war: % %Fast 4/4 Versuch % % % % % % %P[1]=[-20.682615394584445,34.39493306280613]; %P[2]=[46.61170421294497,-31.683112538866112]; D=ab(1,2); A(2,1); N(3,1,2); N(4,3,2); N(5,4,2); %M(6,1,3,blauerWinkel,2,gruenerWinkel,2,orange_angle,3,fourth_angle,1); % %N(22,20,18); N(23,12,10); N(24,3,4); N(25,8,6); N(26,14,23); RA(26,22); N(27,26,23); RA(24,25); %A(5,21,ab(21,5,[1,27])); % %N(53,24,46); N(54,49,20); N(55,25,53); N(56,50,54); N(57,53,47); N(58,54,22); %RA(27,55); A(52,56); %RA(55,57); A(58,56); %RA(27,58); RA(52,57); % % % %Ende der Eingabe. \begin{tikzpicture}[draw=grey,font=\sffamily\scriptsize] \definecolor{Ivory}{rgb}{1.00,1.00,0.94} \definecolor{LightCyan}{rgb}{0.88,1.00,1.00} \definecolor{MintCream}{rgb}{0.96,1.00,0.98} \definecolor{Snow}{rgb}{1.00,0.98,0.98} \definecolor{WhiteSmoke}{rgb}{0.96,0.96,0.96} %Koordinaten als \coordinate (p-1) at (0,0); \foreach \i/\x/\y in { 1/0.75000000000000688338/3.25080866797508472033, 2/1.82028823734364175735/2.19986476414203169227, 3/2.19528823734363820463/3.65223351896981451858, 4/3.26557647468727241247/2.60128961513676149053, 5/2.89057647468727596518/1.14892086030897933036, 6/1.82028823734363620623/4.30175257180814174518, 7/0.37500000000000338618/4.70317742280286488210, 8/1.44528823734363265352/5.75412132663592235104, 9/0.00000000000000000000/6.15554617763064548797, 10/1.49229707268674505194/6.00372573483530924676, 11/0.87762889661793597185/7.37200313117285066511, 12/2.36992596930468035765/7.22018268837751442391, 13/1.75525779323587172165/8.58846008471505584225, 14/2.50525779323587416414/7.28942197903839961270, 15/3.25525779323587105551/8.58846008471505939497, 16/4.00525779323587460823/7.28942197903840494178, 17/4.75525779323587016734/8.58846008471506294768, 18/5.50525779323587372005/7.28942197903840671813, 19/6.25525779323587016734/8.58846008471506650039, 20/5.74244071663733546274/7.17884359575470654136, 21/7.21961294396969943676/7.43953922440608650390, 22/4.99244071663733635091/5.87980549007804764727, 23/2.98459414537349010388/5.85190529203997211738, 24/3.64057647468726885975/4.05365836996454387275, 25/2.89057647468726530704/5.35269647564120099048, 26/3.97303333890988996657/6.98017297334663489039, 27/4.45592221642222430233/5.56002568099457761264, 28/9.36018941865697051696/5.33765141673997955962, 29/8.28990118131333630913/6.38859532057303258767, 30/7.91490118131333630913/4.93622656574525286999, 31/6.84461294396970298948/5.98717046957830234533, 32/8.28990118131334163820/4.28670751290692386704, 33/9.73518941865697406968/3.88528266191220117420, 34/8.66490118131334519092/2.83433875807914326117, 35/10.11018941865697762239/2.43291390708442190061, 36/8.61789234597023146023/2.58473434987975680954, 37/9.23256052203904253872/1.21645695354221494711, 38/7.74026344935229726474/1.36827739633755207649, 39/8.35493162542110567870/0.00000000000000994478, 40/7.60493162542110212598/1.29903810567666577747, 41/6.85493162542110479052/0.00000000000000271221, 42/6.10493162542110390234/1.29903810567666178066, 43/5.35493162542110745505/0.00000000000000361628, 44/4.60493162542110301416/1.29903810567665867204, 45/3.85493162542110923141/0.00000000000000000000, 46/4.36774870201964127148/1.40961648896035884881, 47/5.11774870201964038330/2.70865459463701796494, 48/7.12559527328348618624/2.73655479267509349484, 49/6.46961294396970654219/4.53480171475052085128, 50/7.21961294396971187126/3.23576360907386506582, 51/6.13715607974708809991/1.60828711136843138796, 52/5.65426720223475154370/3.02843440372048844367, 53/4.59071451423282805848/2.89295267694476665454, 54/5.51947490442414956391/5.69550740777029940176, 55/3.84071451423282406168/4.19199078262142155182, 56/6.26947490442414867573/4.39646930209363961950, 57/5.34071451423282539395/4.19199078262142688089, 58/4.76947490442415311662/4.39646930209363961950} \coordinate (p-\i) at (\x,\y); %Innenflächen als \filldraw[yellow,shift={+(0.1,0.1)}] (p-1) -- (p-2) -- (p-3) -- cycle; \filldraw[fill=WhiteSmoke,line width=0] (p-1) -- (p-2) -- (p-3) -- cycle; \filldraw[fill=WhiteSmoke,line width=0] (p-2) -- (p-4) -- (p-3) -- cycle; \filldraw[fill=WhiteSmoke,line width=0] (p-2) -- (p-5) -- (p-4) -- cycle; \filldraw[fill=WhiteSmoke,line width=0] (p-45) -- (p-46) -- (p-5) -- cycle; \filldraw[fill=Snow,line width=0] (p-1) -- (p-3) -- (p-24) -- (p-25) -- (p-6) -- cycle; \filldraw[fill=WhiteSmoke,line width=0] (p-1) -- (p-6) -- (p-7) -- cycle; \filldraw[fill=WhiteSmoke,line width=0] (p-6) -- (p-8) -- (p-7) -- cycle; \filldraw[fill=WhiteSmoke,line width=0] (p-7) -- (p-8) -- (p-9) -- cycle; \filldraw[fill=WhiteSmoke,line width=0] (p-10) -- (p-11) -- (p-9) -- cycle; \filldraw[fill=WhiteSmoke,line width=0] (p-10) -- (p-12) -- (p-11) -- cycle; \filldraw[fill=WhiteSmoke,line width=0] (p-10) -- (p-23) -- (p-12) -- cycle; \filldraw[fill=WhiteSmoke,line width=0] (p-11) -- (p-12) -- (p-13) -- cycle; \filldraw[fill=Snow,line width=0] (p-12) -- (p-23) -- (p-26) -- (p-14) -- (p-13) -- cycle; \filldraw[fill=WhiteSmoke,line width=0] (p-13) -- (p-14) -- (p-15) -- cycle; \filldraw[fill=WhiteSmoke,line width=0] (p-14) -- (p-16) -- (p-15) -- cycle; \filldraw[fill=Snow,line width=0] (p-14) -- (p-26) -- (p-22) -- (p-18) -- (p-16) -- cycle; \filldraw[fill=WhiteSmoke,line width=0] (p-15) -- (p-16) -- (p-17) -- cycle; \filldraw[fill=WhiteSmoke,line width=0] (p-16) -- (p-18) -- (p-17) -- cycle; \filldraw[fill=WhiteSmoke,line width=0] (p-17) -- (p-18) -- (p-19) -- cycle; \filldraw[fill=MintCream,line width=0] (p-18) -- (p-22) -- (p-20) -- (p-19) -- cycle; \filldraw[fill=WhiteSmoke,line width=0] (p-19) -- (p-20) -- (p-21) -- cycle; \filldraw[fill=Snow,line width=0] (p-20) -- (p-54) -- (p-49) -- (p-31) -- (p-21) -- cycle; \filldraw[fill=WhiteSmoke,line width=0] (p-21) -- (p-31) -- (p-29) -- cycle; \filldraw[fill=LightCyan,line width=0] (p-10) -- (p-9) -- (p-8) -- (p-25) -- (p-55) -- (p-27) -- (p-23) -- cycle; \filldraw[fill=WhiteSmoke,line width=0] (p-24) -- (p-3) -- (p-4) -- cycle; \filldraw[fill=MintCream,line width=0] (p-24) -- (p-53) -- (p-55) -- (p-25) -- cycle; \filldraw[fill=WhiteSmoke,line width=0] (p-25) -- (p-8) -- (p-6) -- cycle; \filldraw[fill=WhiteSmoke,line width=0] (p-23) -- (p-27) -- (p-26) -- cycle; \filldraw[fill=Ivory,line width=0] (p-27) -- (p-55) -- (p-57) -- (p-52) -- (p-56) -- (p-58) -- cycle; \filldraw[fill=WhiteSmoke,line width=0] (p-28) -- (p-29) -- (p-30) -- cycle; \filldraw[fill=WhiteSmoke,line width=0] (p-29) -- (p-31) -- (p-30) -- cycle; \filldraw[fill=Snow,line width=0] (p-28) -- (p-30) -- (p-49) -- (p-50) -- (p-32) -- cycle; \filldraw[fill=WhiteSmoke,line width=0] (p-28) -- (p-32) -- (p-33) -- cycle; \filldraw[fill=WhiteSmoke,line width=0] (p-32) -- (p-34) -- (p-33) -- cycle; \filldraw[fill=WhiteSmoke,line width=0] (p-32) -- (p-50) -- (p-34) -- cycle; \filldraw[fill=WhiteSmoke,line width=0] (p-33) -- (p-34) -- (p-35) -- cycle; \filldraw[fill=LightCyan,line width=0] (p-34) -- (p-50) -- (p-56) -- (p-52) -- (p-48) -- (p-36) -- (p-35) -- cycle; \filldraw[fill=WhiteSmoke,line width=0] (p-35) -- (p-36) -- (p-37) -- cycle; \filldraw[fill=WhiteSmoke,line width=0] (p-36) -- (p-38) -- (p-37) -- cycle; \filldraw[fill=WhiteSmoke,line width=0] (p-36) -- (p-48) -- (p-38) -- cycle; \filldraw[fill=WhiteSmoke,line width=0] (p-37) -- (p-38) -- (p-39) -- cycle; \filldraw[fill=Snow,line width=0] (p-38) -- (p-48) -- (p-51) -- (p-40) -- (p-39) -- cycle; \filldraw[fill=WhiteSmoke,line width=0] (p-39) -- (p-40) -- (p-41) -- cycle; \filldraw[fill=WhiteSmoke,line width=0] (p-40) -- (p-42) -- (p-41) -- cycle; \filldraw[fill=Snow,line width=0] (p-40) -- (p-51) -- (p-47) -- (p-44) -- (p-42) -- cycle; \filldraw[fill=WhiteSmoke,line width=0] (p-41) -- (p-42) -- (p-43) -- cycle; \filldraw[fill=WhiteSmoke,line width=0] (p-42) -- (p-44) -- (p-43) -- cycle; \filldraw[fill=WhiteSmoke,line width=0] (p-43) -- (p-44) -- (p-45) -- cycle; \filldraw[fill=MintCream,line width=0] (p-44) -- (p-47) -- (p-46) -- (p-45) -- cycle; \filldraw[fill=WhiteSmoke,line width=0] (p-30) -- (p-31) -- (p-49) -- cycle; \filldraw[fill=MintCream,line width=0] (p-49) -- (p-54) -- (p-56) -- (p-50) -- cycle; \filldraw[fill=WhiteSmoke,line width=0] (p-48) -- (p-52) -- (p-51) -- cycle; \filldraw[fill=Snow,line width=0] (p-24) -- (p-4) -- (p-5) -- (p-46) -- (p-53) -- cycle; \filldraw[fill=MintCream,line width=0] (p-46) -- (p-47) -- (p-57) -- (p-53) -- cycle; \filldraw[fill=MintCream,line width=0] (p-20) -- (p-22) -- (p-58) -- (p-54) -- cycle; \filldraw[fill=WhiteSmoke,line width=0] (p-53) -- (p-57) -- (p-55) -- cycle; \filldraw[fill=WhiteSmoke,line width=0] (p-54) -- (p-58) -- (p-56) -- cycle; \filldraw[fill=MintCream,line width=0] (p-47) -- (p-51) -- (p-52) -- (p-57) -- cycle; \filldraw[fill=MintCream,line width=0] (p-22) -- (p-26) -- (p-27) -- (p-58) -- cycle; %gefüllte Winkel als \fill[red!20] (p-1) -- +(0:0.3 cm) arc (0:60:0.3 cm) -- cycle; %Kanten als \draw[gray,thick] (p-1) -- (p-2); \foreach \i/\j in { 2/1, 3/1, 3/2, 4/3, 4/2, 5/4, 5/2, 5/45, 5/46, 6/1, 7/1, 7/6, 8/7, 8/6, 9/7, 9/8, 10/9, 11/9, 11/10, 12/11, 12/10, 13/11, 13/12, 14/13, 15/13, 15/14, 16/15, 16/14, 17/15, 17/16, 18/17, 18/16, 19/17, 19/18, 20/19, 21/19, 21/20, 21/29, 21/31, 22/20, 22/18, 23/12, 23/10, 24/3, 24/4, 24/25, 25/8, 25/6, 26/14, 26/23, 26/22, 27/26, 27/23, 27/55, 27/58, 29/28, 30/28, 30/29, 31/29, 31/30, 32/28, 33/28, 33/32, 34/32, 34/33, 35/33, 35/34, 36/35, 37/35, 37/36, 38/36, 38/37, 39/37, 39/38, 40/39, 41/39, 41/40, 42/40, 42/41, 43/41, 43/42, 44/42, 44/43, 45/43, 45/44, 46/45, 47/44, 47/46, 48/36, 48/38, 49/30, 49/31, 49/50, 50/32, 50/34, 51/40, 51/47, 51/48, 52/48, 52/51, 52/56, 52/57, 53/24, 53/46, 54/49, 54/20, 55/25, 55/53, 55/57, 56/50, 56/54, 57/53, 57/47, 58/54, 58/22, 58/56} \draw[gray,thick] (p-\i) -- (p-\j); %Punkte als \fill[red] (p-1) circle (1.125pt) %einzustellende Kanten als \draw[green] (p-1) -- (p-2); %nicht passende Kanten als \draw[magenta,ultra thick,dash pattern=on 0.01cm off 0.09cm] (p-1) -- (p-2); %Winkel als \draw[->,red] (p-1) +(0:0.3 cm) arc (0:60:0.3 cm); %Punktnummern als \node[anchor=30] (P1) at (p-1) {1}; \end{tikzpicture} $


   Profil
Slash
Aktiv Letzter Besuch: in der letzten Woche
Dabei seit: 23.03.2005
Mitteilungen: 9140
Wohnort: Cuxhaven
  Beitrag No.1752, vom Themenstarter, eingetragen 2019-06-02

Fast 4/4 mit 110, wenn sich beide Knoten in der Mitte treffen würden. 56 Knoten, 2×Grad 2, 54×Grad 4, 0 Überschneidungen 110 Kanten, minimal 0.99999999999999611422, maximal 1.00000000000000732747 $ %Eingabe war: % %Fast 4/4 Versuch % % % % % % %P[1]=[-26.95171782785195,25.397033996493946]; %P[2]=[51.914144606974304,-33.80749660255654]; D=ab(1,2); A(2,1); N(3,1,2); N(4,3,2); N(5,4,2); %M(6,1,3,blauerWinkel,2,gruenerWinkel,2,orange_angle,3,fourth_angle,1); % %N(22,20,18); N(23,12,10); N(24,3,4); N(25,8,6); N(26,14,23); RA(26,22); N(27,26,23); RA(24,25); RA(25,27); %A(5,21,ab(21,5,[1,27])); % %N(53,46,47); N(54,20,22); N(55,53,52); N(56,54,27); % %RA(24,53); A(54,49); % % % %Ende der Eingabe. \begin{tikzpicture}[draw=grey,font=\sffamily\scriptsize] \definecolor{GhostWhite}{rgb}{0.97,0.97,1.00} \definecolor{Ivory}{rgb}{1.00,1.00,0.94} \definecolor{MintCream}{rgb}{0.96,1.00,0.98} \definecolor{Snow}{rgb}{1.00,0.98,0.98} \definecolor{WhiteSmoke}{rgb}{0.96,0.96,0.96} %Koordinaten als \coordinate (p-1) at (0,0); \foreach \i/\x/\y in { 1/1.12670775588210281271/2.97209915478416508705, 2/2.32630509924172068636/2.07156252931879958368, 3/2.50639402225323015827/3.56071261571323516293, 4/3.70599136561284803193/2.66017599024787010364, 5/3.52590244260133767185/1.17102590385343452439, 6/2.04897197251536455909/4.15507367467790977855, 7/0.56335387794105129533/4.36229065533679793987, 8/1.48561809457431293069/5.54526517523054085501, 9/0.00000000000000000000/5.75248215588942901633, 10/1.49457549488877194932/5.62502985077892070365, 11/0.85766468144097096626/6.98309634978155013840, 12/2.35224017632974291558/6.85564404467104271390, 13/1.71532936288194148844/8.21371054367367392501, 14/2.46532936288194370889/6.91467243799701591911, 15/3.21532936288194148844/8.21371054367367747773, 16/3.96532936288194459706/6.91467243799701947182, 17/4.71532936288194193253/8.21371054367368103044, 18/5.46532936288194548524/6.91467243799702302454, 19/6.21532936288194193253/8.21371054367368280680, 20/5.66988573371026216563/6.81639481435692484723, 21/7.15271846699199542741/7.04268463982024961467, 22/4.91988573371027015924/5.51735670868026240043, 23/2.98915098977754478682/5.49757754566841239097, 24/3.88608028862435794792/4.14932607664230523881, 25/2.97123618914862630547/5.33804819457165535823, 26/3.94275815522164396754/6.65543477953348272536, 27/4.46868835098232342062/5.25065813209548615248, 28/9.55191315371122939837/5.24161138888951949610, 29/8.35231581035161418924/6.14214801435488411130, 30/8.17222688734010382916/4.65299792796044897614, 31/6.97262954398048417914/5.55353455342581359133, 32/8.62964893707796854017/4.05863686899577480460, 33/10.11526703165228191494/3.85141988833688841964, 34/9.19300281501901928038/2.66844536844314150770, 35/10.67862090959333265516/2.46122838778425645501, 36/9.18404541470456159402/2.58868069289476387951, 37/9.82095622815236168890/1.23061419389213289044, 38/8.32638073326359062776/1.35806649900264209130, 39/8.96329154671139249899/0.00000000000001642783, 40/8.21329154671139072263/1.29903810567666844200, 41/7.46329154671139427535/0.00000000000000778160, 42/6.71329154671138983446/1.29903810567666400111, 43/5.96329154671139249899/0.00000000000000475542, 44/5.21329154671138805810/1.29903810567666155862, 45/4.46329154671138983446/0.00000000000000000000, 46/5.00873517588307137771/1.39731572931675929183, 47/5.75873517588306338411/2.69635383499342218272, 48/7.68946991981578964470/2.71613299800527085992, 49/6.79254062096897293088/4.06438446703137934435, 50/7.70738472044470590561/2.87566234910202922492, 51/6.73586275437168779945/1.55827576414020296802, 52/6.20993255861101012272/2.96305241157819798659, 53/4.25873517588306338411/2.69635383499341285685, 54/6.41988573371027015924/5.51735670868027217040, 55/5.08109210647348419343/3.95083742544404170616, 56/5.59752880311984934991/4.26287311822964287700} \coordinate (p-\i) at (\x,\y); %Innenflächen als \filldraw[yellow,shift={+(0.1,0.1)}] (p-1) -- (p-2) -- (p-3) -- cycle; \filldraw[fill=WhiteSmoke,line width=0] (p-1) -- (p-2) -- (p-3) -- cycle; \filldraw[fill=WhiteSmoke,line width=0] (p-2) -- (p-4) -- (p-3) -- cycle; \filldraw[fill=WhiteSmoke,line width=0] (p-2) -- (p-5) -- (p-4) -- cycle; \filldraw[fill=WhiteSmoke,line width=0] (p-45) -- (p-46) -- (p-5) -- cycle; \filldraw[fill=Snow,line width=0] (p-1) -- (p-3) -- (p-24) -- (p-25) -- (p-6) -- cycle; \filldraw[fill=WhiteSmoke,line width=0] (p-1) -- (p-6) -- (p-7) -- cycle; \filldraw[fill=WhiteSmoke,line width=0] (p-6) -- (p-8) -- (p-7) -- cycle; \filldraw[fill=WhiteSmoke,line width=0] (p-7) -- (p-8) -- (p-9) -- cycle; \filldraw[fill=WhiteSmoke,line width=0] (p-10) -- (p-11) -- (p-9) -- cycle; \filldraw[fill=WhiteSmoke,line width=0] (p-10) -- (p-12) -- (p-11) -- cycle; \filldraw[fill=WhiteSmoke,line width=0] (p-10) -- (p-23) -- (p-12) -- cycle; \filldraw[fill=WhiteSmoke,line width=0] (p-11) -- (p-12) -- (p-13) -- cycle; \filldraw[fill=Snow,line width=0] (p-12) -- (p-23) -- (p-26) -- (p-14) -- (p-13) -- cycle; \filldraw[fill=WhiteSmoke,line width=0] (p-13) -- (p-14) -- (p-15) -- cycle; \filldraw[fill=WhiteSmoke,line width=0] (p-14) -- (p-16) -- (p-15) -- cycle; \filldraw[fill=Snow,line width=0] (p-14) -- (p-26) -- (p-22) -- (p-18) -- (p-16) -- cycle; \filldraw[fill=WhiteSmoke,line width=0] (p-15) -- (p-16) -- (p-17) -- cycle; \filldraw[fill=WhiteSmoke,line width=0] (p-16) -- (p-18) -- (p-17) -- cycle; \filldraw[fill=WhiteSmoke,line width=0] (p-17) -- (p-18) -- (p-19) -- cycle; \filldraw[fill=MintCream,line width=0] (p-18) -- (p-22) -- (p-20) -- (p-19) -- cycle; \filldraw[fill=WhiteSmoke,line width=0] (p-19) -- (p-20) -- (p-21) -- cycle; \filldraw[fill=Snow,line width=0] (p-20) -- (p-54) -- (p-49) -- (p-31) -- (p-21) -- cycle; \filldraw[fill=WhiteSmoke,line width=0] (p-21) -- (p-31) -- (p-29) -- cycle; \filldraw[fill=Ivory,line width=0] (p-10) -- (p-9) -- (p-8) -- (p-25) -- (p-27) -- (p-23) -- cycle; \filldraw[fill=WhiteSmoke,line width=0] (p-24) -- (p-3) -- (p-4) -- cycle; \filldraw[fill=GhostWhite,line width=0] (p-24) -- (p-53) -- (p-55) -- (p-52) -- (p-50) -- (p-49) -- (p-54) -- (p-56) -- (p-27) -- (p-25) -- cycle; \filldraw[fill=Snow,line width=0] (p-24) -- (p-4) -- (p-5) -- (p-46) -- (p-53) -- cycle; \filldraw[fill=WhiteSmoke,line width=0] (p-25) -- (p-8) -- (p-6) -- cycle; \filldraw[fill=WhiteSmoke,line width=0] (p-23) -- (p-27) -- (p-26) -- cycle; \filldraw[fill=WhiteSmoke,line width=0] (p-28) -- (p-29) -- (p-30) -- cycle; \filldraw[fill=WhiteSmoke,line width=0] (p-29) -- (p-31) -- (p-30) -- cycle; \filldraw[fill=Snow,line width=0] (p-28) -- (p-30) -- (p-49) -- (p-50) -- (p-32) -- cycle; \filldraw[fill=WhiteSmoke,line width=0] (p-28) -- (p-32) -- (p-33) -- cycle; \filldraw[fill=WhiteSmoke,line width=0] (p-32) -- (p-34) -- (p-33) -- cycle; \filldraw[fill=WhiteSmoke,line width=0] (p-32) -- (p-50) -- (p-34) -- cycle; \filldraw[fill=WhiteSmoke,line width=0] (p-33) -- (p-34) -- (p-35) -- cycle; \filldraw[fill=Ivory,line width=0] (p-34) -- (p-50) -- (p-52) -- (p-48) -- (p-36) -- (p-35) -- cycle; \filldraw[fill=WhiteSmoke,line width=0] (p-35) -- (p-36) -- (p-37) -- cycle; \filldraw[fill=WhiteSmoke,line width=0] (p-36) -- (p-38) -- (p-37) -- cycle; \filldraw[fill=WhiteSmoke,line width=0] (p-36) -- (p-48) -- (p-38) -- cycle; \filldraw[fill=WhiteSmoke,line width=0] (p-37) -- (p-38) -- (p-39) -- cycle; \filldraw[fill=Snow,line width=0] (p-38) -- (p-48) -- (p-51) -- (p-40) -- (p-39) -- cycle; \filldraw[fill=WhiteSmoke,line width=0] (p-39) -- (p-40) -- (p-41) -- cycle; \filldraw[fill=WhiteSmoke,line width=0] (p-40) -- (p-42) -- (p-41) -- cycle; \filldraw[fill=Snow,line width=0] (p-40) -- (p-51) -- (p-47) -- (p-44) -- (p-42) -- cycle; \filldraw[fill=WhiteSmoke,line width=0] (p-41) -- (p-42) -- (p-43) -- cycle; \filldraw[fill=WhiteSmoke,line width=0] (p-42) -- (p-44) -- (p-43) -- cycle; \filldraw[fill=WhiteSmoke,line width=0] (p-43) -- (p-44) -- (p-45) -- cycle; \filldraw[fill=MintCream,line width=0] (p-44) -- (p-47) -- (p-46) -- (p-45) -- cycle; \filldraw[fill=WhiteSmoke,line width=0] (p-30) -- (p-31) -- (p-49) -- cycle; \filldraw[fill=WhiteSmoke,line width=0] (p-48) -- (p-52) -- (p-51) -- cycle; \filldraw[fill=WhiteSmoke,line width=0] (p-46) -- (p-47) -- (p-53) -- cycle; \filldraw[fill=Snow,line width=0] (p-47) -- (p-51) -- (p-52) -- (p-55) -- (p-53) -- cycle; \filldraw[fill=WhiteSmoke,line width=0] (p-20) -- (p-22) -- (p-54) -- cycle; \filldraw[fill=Snow,line width=0] (p-22) -- (p-26) -- (p-27) -- (p-56) -- (p-54) -- cycle; %gefüllte Winkel als \fill[red!20] (p-1) -- +(0:0.3 cm) arc (0:60:0.3 cm) -- cycle; %Kanten als \draw[gray,thick] (p-1) -- (p-2); \foreach \i/\j in { 2/1, 3/1, 3/2, 4/3, 4/2, 5/4, 5/2, 5/45, 5/46, 6/1, 7/1, 7/6, 8/7, 8/6, 9/7, 9/8, 10/9, 11/9, 11/10, 12/11, 12/10, 13/11, 13/12, 14/13, 15/13, 15/14, 16/15, 16/14, 17/15, 17/16, 18/17, 18/16, 19/17, 19/18, 20/19, 21/19, 21/20, 21/29, 21/31, 22/20, 22/18, 23/12, 23/10, 24/3, 24/4, 24/25, 24/53, 25/8, 25/6, 25/27, 26/14, 26/23, 26/22, 27/26, 27/23, 29/28, 30/28, 30/29, 31/29, 31/30, 32/28, 33/28, 33/32, 34/32, 34/33, 35/33, 35/34, 36/35, 37/35, 37/36, 38/36, 38/37, 39/37, 39/38, 40/39, 41/39, 41/40, 42/40, 42/41, 43/41, 43/42, 44/42, 44/43, 45/43, 45/44, 46/45, 47/44, 47/46, 48/36, 48/38, 49/30, 49/31, 49/50, 50/32, 50/34, 50/52, 51/40, 51/47, 51/48, 52/48, 52/51, 53/46, 53/47, 54/20, 54/22, 54/49, 55/53, 55/52, 56/54, 56/27} \draw[gray,thick] (p-\i) -- (p-\j); %Punkte als \fill[red] (p-1) circle (1.125pt) %einzustellende Kanten als \draw[green] (p-1) -- (p-2); %nicht passende Kanten als \draw[magenta,ultra thick,dash pattern=on 0.01cm off 0.09cm] (p-1) -- (p-2); %Winkel als \draw[->,red] (p-1) +(0:0.3 cm) arc (0:60:0.3 cm); %Punktnummern als \node[anchor=30] (P1) at (p-1) {1}; \end{tikzpicture} $


   Profil
Slash
Aktiv Letzter Besuch: in der letzten Woche
Dabei seit: 23.03.2005
Mitteilungen: 9140
Wohnort: Cuxhaven
  Beitrag No.1753, vom Themenstarter, eingetragen 2019-06-02

Soeben auf YouTube entdeckt: H. Harborth: Regular matchstick graphs Leider präsentiert er unseren 108er Team-Graphen nur unter meinem Namen, obwohl es in unseren Artikeln ja korrekt steht - "On July 3, 2016 the authors discovered ...".


   Profil
haribo
Senior Letzter Besuch: in der letzten Woche
Dabei seit: 25.10.2012
Mitteilungen: 4495
  Beitrag No.1754, eingetragen 2019-06-02

23 aufrufe in zwei jahren.... nicht janz einfach zum zuhören aber haben wir ihm eigendlich mein dutzend tetraeder raumgebilde mal gezeigt? (letzte darstellung im film)


   Profil
Slash
Aktiv Letzter Besuch: in der letzten Woche
Dabei seit: 23.03.2005
Mitteilungen: 9140
Wohnort: Cuxhaven
  Beitrag No.1755, vom Themenstarter, eingetragen 2019-06-02

\quoteon(2019-06-02 20:29 - haribo in Beitrag No. 1754) 23 aufrufe in zwei jahren.... nicht janz einfach zum zuhören aber haben wir ihm eigendlich mein dutzend tetraeder raumgebilde mal gezeigt? (letzte darstellung im film) \quoteoff Tja, Streichhölzer kennen alle, Streichholzgraphen kaum jemand. :-( Deinen 12er hatte ich ihm und Prof. Servatius Ende September 2017 gemailt. Ich denke aber, dass seine Folien laufend aktualisiert werden. Vielleicht findet ja mal ein Vortrag an einer deutschen Uni statt. Deinen und Stefans nur Dreieck-Ring kennt er ja inzwischen auch. Mal sehen, vielleicht sind wir ja in der nächsten Geombinatorics wieder mit dabei.


   Profil
StefanVogel
Senior Letzter Besuch: in der letzten Woche
Dabei seit: 26.11.2005
Mitteilungen: 4288
Wohnort: Raun
  Beitrag No.1756, eingetragen 2019-06-03

Der Graph "the right one is not correct" bei 15:00 min, so gut ich das erkennen konnte: 52 Knoten, 52×Grad 4, 0 Überschneidungen 104 Kanten, minimal 0.91226331434688245903, maximal 1.00000000000000333067 einzustellende Kanten, Abstände und Winkel: |P13-P21|=1.00000000000000000000 ∠(P5-P1,P26-P11)=89.99999999999998578915° nicht passende Kanten: |P22-P52|=0.91226331434688257005 |P27-P13|=0.91226331434688245903 |P27-P48|=0.91226331434688245903 |P52-P40|=0.91226331434688245903 $ %Eingabe war: % %#1756 % % % % %P[1]=[0,0]; P[2]=[50,0]; D=ab(1,2); A(2,1,Bew(1)); L(3,1,2); L(4,3,2); L(5,4,2); M(6,1,3,blauerWinkel,3); N(12,6,3); N(13,10,12); M(14,5,4,-blauerWinkel); %L(15,14,5); L(16,14,15); L(17,16,15); L(18,16,17); L(19,18,17); N(20,4,14); N(21,12,20); N(22,20,18); RA(13,21); A(21,22); M(23,11,10,gruenerWinkel,2); RW(26,11,5,1,90); L(27,25,23); A(27,13); A(26,19,ab(19,26,[1,27])); A(27,48); A(22,52); % % % % % % % % % % %Ende der Eingabe. \begin{tikzpicture}[draw=grey,font=\sffamily\scriptsize] \definecolor{Blue}{rgb}{0.00,0.00,1.00} \definecolor{Green}{rgb}{0.00,0.50,0.00} \definecolor{LimeGreen}{rgb}{0.20,0.80,0.20} \definecolor{Violet}{rgb}{0.93,0.51,0.93} %Koordinaten als \coordinate (p-1) at (0,0); \foreach \i/\x/\y in { 1/1.92/0.00, 2/2.92/0.00, 3/2.42/0.87, 4/3.42/0.87, 5/3.92/0.00, 6/2.26/0.94, 7/1.28/0.77, 8/1.62/1.71, 9/0.64/1.54, 10/0.99/2.48, 11/0.00/2.31, 12/2.76/1.80, 13/1.98/2.43, 14/3.57/0.94, 15/4.56/0.77, 16/4.21/1.71, 17/5.20/1.54, 18/4.85/2.48, 19/5.83/2.31, 20/3.07/1.80, 21/2.92/2.79, 22/3.85/2.43, 23/0.87/2.81, 24/0.00/3.31, 25/0.87/3.81, 26/0.00/4.31, 27/1.73/3.31, 28/3.92/6.62, 29/2.92/6.62, 30/3.42/5.75, 31/2.42/5.75, 32/1.92/6.62, 33/3.57/5.68, 34/4.56/5.85, 35/4.21/4.91, 36/5.20/5.08, 37/4.85/4.14, 38/5.83/4.31, 39/3.07/4.81, 40/3.85/4.18, 41/2.26/5.68, 42/1.28/5.85, 43/1.62/4.91, 44/0.64/5.08, 45/0.99/4.14, 46/2.76/4.81, 47/2.92/3.82, 48/1.98/4.18, 49/4.97/3.81, 50/5.83/3.31, 51/4.97/2.81, 52/4.10/3.31} \coordinate (p-\i) at (\x,\y); %Innenflächen als \filldraw[yellow,shift={+(0.1,0.1)}] (p-1) -- (p-2) -- (p-3) -- cycle; %gefüllte Winkel als \fill[red!20] (p-1) -- +(0:0.3 cm) arc (0:60:0.3 cm) -- cycle; \foreach \i/\a/\b/\r/\c in { 1/60.00/69.72/0.4/Blue, 11/9.72/30.00/0.4/Green} \fill[\c!20] (p-\i) -- +(\a:\r cm) arc (\a:\b:\r cm) -- cycle; %Kanten als \draw[gray,thick] (p-1) -- (p-2); \foreach \i/\j in { 2/1, 3/1, 3/2, 4/3, 4/2, 5/4, 5/2, 6/1, 7/1, 7/6, 8/7, 8/6, 9/7, 9/8, 10/9, 10/8, 11/9, 11/10, 12/6, 12/3, 13/10, 13/12, 13/21, 14/5, 15/14, 15/5, 16/14, 16/15, 17/16, 17/15, 18/16, 18/17, 19/18, 19/17, 19/50, 19/51, 20/4, 20/14, 21/12, 21/20, 21/22, 22/20, 22/18, 22/52, 23/11, 24/11, 24/23, 25/24, 25/23, 26/24, 26/25, 26/44, 26/45, 27/25, 27/23, 27/13, 27/48, 29/28, 30/28, 30/29, 31/29, 31/30, 32/29, 32/31, 33/28, 34/28, 34/33, 35/33, 35/34, 36/34, 36/35, 37/35, 37/36, 38/36, 38/37, 39/30, 39/33, 40/37, 40/39, 40/47, 41/32, 42/32, 42/41, 43/41, 43/42, 44/42, 44/43, 45/43, 45/44, 46/31, 46/41, 47/39, 47/46, 47/48, 48/45, 48/46, 49/38, 50/38, 50/49, 51/49, 51/50, 52/40, 52/49, 52/51} \draw[gray,thick] (p-\i) -- (p-\j); %Punkte als \fill[red] (p-1) circle (1.125pt) \foreach \i in {1,...,52} \fill[red] (p-\i) circle (1.125pt); %einzustellende Kanten als \draw[green] (p-1) -- (p-2); \draw[LimeGreen,very thick] (p-13) -- (p-21); \draw[Violet,very thick] (p-26) -- (p-11); %nicht passende Kanten als \draw[magenta,ultra thick,dash pattern=on 0.01cm off 0.09cm] (p-1) -- (p-2); \draw[cyan,ultra thick,dash pattern=on 0.01cm off 0.09cm] (p-22) -- (p-52); \draw[cyan,ultra thick,dash pattern=on 0.01cm off 0.09cm] (p-27) -- (p-13); \draw[cyan,ultra thick,dash pattern=on 0.01cm off 0.09cm] (p-27) -- (p-48); \draw[cyan,ultra thick,dash pattern=on 0.01cm off 0.09cm] (p-52) -- (p-40); %Winkel als \draw[->,red] (p-1) +(0:0.3 cm) arc (0:60:0.3 cm); \foreach \i/\a/\b/\r/\c in { 1/60.00/69.72/0.4/Blue, 11/9.72/30.00/0.4/Green} { \draw[\c,thick] (p-\i) +(\a:\r cm) arc (\a:\b-4:\r cm); \fill[\c!90!black] (p-\i) -- +(\b:\r cm) coordinate (pfeilspitze-\i) -- ([turn]-24.84:0.08cm) -- ([turn]-31.04:0.08cm) -- ([turn]-120.00:0.08cm) -- ([turn]15.522:0.04cm) -- ([turn]-39.275:0.04cm) -- ([turn]15.522:0.08cm) -- ([turn]-120.00:0.08cm) -- ([turn]-31.04:0.08cm) -- (pfeilspitze-\i); } %Punktnummern als \node[anchor=30] (P1) at (p-1) {1}; \foreach \i/\a in { 1/210, 2/330, 3/150, 4/30, 5/330, 6/40, 7/280, 8/40, 9/280, 10/40, 11/240, 12/291, 13/171, 14/200, 15/320, 16/80, 17/320, 18/80, 19/20, 20/249, 21/51, 22/9, 23/360, 24/180, 25/120, 26/200, 27/360, 28/100, 29/150, 30/330, 31/210, 32/150, 33/220, 34/40, 35/160, 36/40, 37/220, 38/340, 39/111, 40/351, 41/320, 42/200, 43/260, 44/140, 45/320, 46/69, 47/231, 48/189, 49/180, 50/360, 51/180, 52/180} \node[anchor=\a] (P\i) at (p-\i) {\i}; \end{tikzpicture} $


   Profil
Slash
Aktiv Letzter Besuch: in der letzten Woche
Dabei seit: 23.03.2005
Mitteilungen: 9140
Wohnort: Cuxhaven
  Beitrag No.1757, vom Themenstarter, eingetragen 2019-06-04

Ich bin mir nicht sicher, ob wir diesen Japan-Graphen schon mal hatten. Aber auf jeden Fall hatten wir bessere Näherungen für diesen Rahmen: hier.


   Profil
StefanVogel
Senior Letzter Besuch: in der letzten Woche
Dabei seit: 26.11.2005
Mitteilungen: 4288
Wohnort: Raun
  Beitrag No.1758, eingetragen 2019-06-08

Zur Abwechslung mal wieder ein Programmfehler, zufällig gefunden weil ich mir erlaubt habe einen anderen Browser zu verwenden. Das kommt davon. \quoteon(2018-08-19 20:42 - Slash in Beitrag No. 1324) Fast ein 110er. Vielleicht auch schon mal da gewesen. \geo ebene(561.13,565.96) x(6.94,14.04) y(8.03,15.19) form(.) #//Eingabe war: # #Fast 4/4 mit 110 # # # # #P[1]=[-200.57291126192445,-79.93074941651577]; #P[2]=[-125.69579330087572,-105.1576828379053]; D=ab(1,2); A(2,1,Bew(1)); #L(3,1,2); L(4,3,2); L(5,4,2); L(6,4,5); L(7,6,5); M(8,1,3,blauerWinkel,2); #L(12,10,8); N(13,12,3); #N(14,13,6); L(15,13,14); L(16,15,14); N(17,12,15); N(18,17,11); L(19,11,18); #L(20,19,18); L(21,19,20); L(22,21,20); L(23,21,22); N(24,22,17); #M(25,23,22,green_angle); N(26,23,25); N(27,26,25); N(28,26,27); RA(24,25); #A(28,7,ab(28,7,[1,28],"gespiegelt")); #N(55,54,27); #RA(24,16); A(51,43); #RA(16,55); A(43,55); # # # # # # # # # # #//Ende der Eingabe, weiter mit fedgeo: p(7.461505230603489,8.988378899068778,P1) p(8.4091664630986,8.669101295053323,P2) p(8.211838362787855,9.649438798583487,P3) p(9.159499595282966,9.330161194568033,P4) p(9.35682769559371,8.349823691037871,P5) p(10.107160827778076,9.01088359055258,P6) p(10.30448892808882,8.030546087022419,P7) p(8.167018363546063,9.69707574486785,P8) p(7.200512325030876,9.95371961780013,P9) p(7.906025457973449,10.662416463599202,P10) p(6.939519419458263,10.919060336531484,P11) p(8.872531496488635,10.405772590666922,P12) p(9.193474127229756,9.458673953896197,P13) p(10.02918799575213,10.007839074747263,P14) p(9.135740115961568,10.457005954757074,P15) p(9.971453984483942,11.00617107560814,P16) p(8.814797485220447,11.404104591527801,P17) p(7.939518402588441,10.920486428607017,P18) p(7.438283879057804,11.785797905718592,P19) p(8.438282862187982,11.787223997794126,P20) p(7.937048338657345,12.6525354749057,P21) p(8.937047321787524,12.653961566981234,P22) p(8.435812798256887,13.51927304409281,P23) p(9.650511353742818,11.953269712378873,P24) p(9.149276830212179,12.818581189490446,P25) p(9.39936176054501,13.786805093151383,P26) p(10.112825792500303,13.086113238549022,P27) p(10.362910722833135,14.054337142209956,P28) p(13.16551520144373,8.93305850420731,P29) p(12.211839776992093,8.632221031812344,P30) p(12.428144595713572,9.608546912549853,P31) p(11.474469171261937,9.30770944015489,P32) p(11.25816435254045,8.331383559417379,P33) p(10.520793746810305,9.006871967759924,P34) p(12.473880091958776,9.655305605501415,P35) p(13.44518198423162,9.89315562981756,P36) p(12.753546874746668,10.615402731111667,P37) p(13.724848767019513,10.853252755427816,P38) p(11.78224498247382,10.377552706795518,P39) p(11.442993560059849,9.436856968317825,P40) p(10.61808805747738,10.002127621907045,P41) p(11.520079554790719,10.433881416070411,P42) p(10.69517405220826,10.999152069659633,P43) p(11.859330977204694,11.374577154548106,P44) p(12.725065547510994,10.874073754183467,P45) p(13.24298867111981,11.729500921177413,P46) p(12.243205451611294,11.750321919933064,P47) p(12.761128575220113,12.605749086927009,P48) p(11.761345355711594,12.62657008568266,P49) p(12.279268479320411,13.481997252676605,P50) p(11.03442547462224,11.939847808137333,P51) p(11.552348598231061,12.795274975131274,P52) p(11.321089601076773,13.768167197443281,P53) p(10.594169719987423,13.081444919897951,P54) p(10.34408478965459,12.113221016237016,P55) nolabel() s(P1,P2) s(P1,P3) s(P2,P3) s(P3,P4) s(P2,P4) s(P4,P5) s(P2,P5) s(P4,P6) s(P5,P6) s(P6,P7) s(P5,P7) s(P33,P7) s(P34,P7) s(P1,P8) s(P1,P9) s(P8,P9) s(P9,P10) s(P8,P10) s(P9,P11) s(P10,P11) s(P10,P12) s(P8,P12) s(P12,P13) s(P3,P13) s(P13,P14) s(P6,P14) s(P13,P15) s(P14,P15) s(P15,P16) s(P14,P16) s(P55,P16) s(P12,P17) s(P15,P17) s(P17,P18) s(P11,P18) s(P11,P19) s(P18,P19) s(P19,P20) s(P18,P20) s(P19,P21) s(P20,P21) s(P21,P22) s(P20,P22) s(P21,P23) s(P22,P23) s(P22,P24) s(P17,P24) s(P25,P24) s(P16,P24) s(P23,P25) s(P23,P26) s(P25,P26) s(P26,P27) s(P25,P27) s(P26,P28) s(P27,P28) s(P53,P28) s(P54,P28) s(P29,P30) s(P29,P31) s(P30,P31) s(P30,P32) s(P31,P32) s(P30,P33) s(P32,P33) s(P32,P34) s(P33,P34) s(P29,P35) s(P29,P36) s(P35,P36) s(P35,P37) s(P36,P37) s(P36,P38) s(P37,P38) s(P35,P39) s(P37,P39) s(P31,P40) s(P39,P40) s(P34,P41) s(P40,P41) s(P40,P42) s(P41,P42) s(P41,P43) s(P42,P43) s(P55,P43) s(P39,P44) s(P42,P44) s(P38,P45) s(P44,P45) s(P38,P46) s(P45,P46) s(P45,P47) s(P46,P47) s(P46,P48) s(P47,P48) s(P47,P49) s(P48,P49) s(P48,P50) s(P49,P50) s(P44,P51) s(P49,P51) s(P52,P51) s(P43,P51) s(P50,P52) s(P50,P53) s(P52,P53) s(P52,P54) s(P53,P54) s(P54,P55) s(P27,P55) pen(2) color(#0000FF) m(P3,P1,MA10) m(P1,P8,MB10) b(P1,MA10,MB10) color(#008000) m(P22,P23,MA11) m(P23,P25,MB11) b(P23,MA11,MB11) pen(2) color(red) s(P24,P25) abstand(P24,P25,A0) print(abs(P24,P25):,6.94,15.193) print(A0,7.76,15.193) color(red) s(P24,P16) abstand(P24,P16,A1) print(abs(P24,P16):,6.94,15.004) print(A1,7.76,15.004) color(red) s(P16,P55) abstand(P16,P55,A2) print(abs(P16,P55):,6.94,14.814) print(A2,7.76,14.814) print(min=0.9999999999999908,6.94,14.624) print(max=1.1680810280149745,6.94,14.434) \geooff \geoprint() \quoteoff Im fedgeo-Quelltext zu diesem Graph geht es um die beiden Eingabezeilen \sourceon xml ... setAttributeNS("http://www.w3.org/1999/xlink","href","#blauerWinkel"), und später beim Erzeugen der Animation mit getAttribute("xlink:href") ausgelesen. Deshalb funktioniert im obigen Graph nur die Animation zum ersten Winkel und die zum zweiten Winkel nicht. Das habe ich in der neuesten Version Streichholzgraph-1554.htm korrigiert, da verwende ich getAttributeNS("http://www.w3.org/1999/xlink","href") und zusätzlich auch noch setAttributeNS("http://www.w3.org/1999/xlink","xlink:href","#blauerWinkel").


   Profil
Slash
Aktiv Letzter Besuch: in der letzten Woche
Dabei seit: 23.03.2005
Mitteilungen: 9140
Wohnort: Cuxhaven
  Beitrag No.1759, vom Themenstarter, eingetragen 2019-06-08

Zum Glück nur ein Animationsfehler. Ich habe zufällig die erste Version des Graphen gefunden. War also wirklich schon mal da: #1151


   Profil
-->> Fortsetzung auf der nächsten Seite -->>
Seite 44Gehe zur Seite: 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | 16 | 17 | 18 | 19 | 20 | 21 | 22 | 23 | 24 | 25 | 26 | 27 | 28 | 29 | 30 | 31 | 32 | 33 | 34 | 35 | 36 | 37 | 38 | 39 | 40 | 41 | 42 | 43 | 44 | 45 | 46 | 47 | 48 | 49 | 50 | 51 | 52 | 53 | 54 | 55 | 56 | 57 | 58 | 59 | 60 | 61 | 62  

Wechsel in ein anderes Forum:
 Suchen    
 
All logos and trademarks in this site are property of their respective owner. The comments are property of their posters, all the rest © 2001-2023 by Matroids Matheplanet
This web site was originally made with PHP-Nuke, a former web portal system written in PHP that seems no longer to be maintained nor supported. PHP-Nuke is Free Software released under the GNU/GPL license.
Ich distanziere mich von rechtswidrigen oder anstößigen Inhalten, die sich trotz aufmerksamer Prüfung hinter hier verwendeten Links verbergen mögen.
Lesen Sie die Nutzungsbedingungen, die Distanzierung, die Datenschutzerklärung und das Impressum.
[Seitenanfang]